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A B S T R A C T

We introduce a new approach to modelling decision confidence, with the aim of enabling computationally
cheap predictions while taking into account, and thereby exploiting, trial-by-trial variability in stochastically
fluctuating stimuli. Using the framework of the drift diffusion model of decision making, along with time-
dependent thresholds and the idea of a Bayesian confidence readout, we derive expressions for the probability
distribution over confidence reports. In line with current models of confidence, the derivations allow for the
accumulation of ‘‘pipeline’’ evidence that has been received but not processed by the time of response, the
effect of drift rate variability, and metacognitive noise. The expressions are valid for stimuli that change
over the course of a trial with normally-distributed fluctuations in the evidence they provide. A number of
approximations are made to arrive at the final expressions, and we test all approximations via simulation.
The derived expressions contain only a small number of standard functions, and require evaluating only once
per trial, making trial-by-trial modelling of confidence data in stochastically fluctuating stimuli tasks more
feasible. We conclude by using the expressions to gain insight into the confidence of optimal observers, and
empirically observed patterns.
. Introduction

How humans and other animals make perceptual decisions is of
undamental interest. It is increasingly recognised that decision confi-
ence, an estimate of the probability a decision was correct, is both
heoretically important and used in a variety of ways to shape in-
ividual and group decision making (Bahrami et al., 2010; van den
erg, Zylberberg, et al., 2016; Desender et al., 2019, 2018; Drugowitsch
t al., 2019; Sanders et al., 2016). Confidence has also been linked
o psychological disorder (Hauser et al., 2017; Rouault et al., 2018).
eflecting the significance of confidence judgements, substantial ef-

orts have been made to characterise their underlying computational
echanisms (e.g. Balsdon et al., 2020; van den Berg, Anandalingam,

t al., 2016; Desender et al., 2020; Fleming & Daw, 2017; Geurts
t al., 2022; Kiani et al., 2014; Moran et al., 2015; Pleskac & Buse-
eyer, 2010; Ratcliff & Starns, 2009; Yu et al., 2015; Zylberberg et al.,
012). The present work builds on these efforts to introduce a set
f mathematical expressions for confidence using the drift diffusion
odel (also known as the diffusion decision model; DDM; Ratcliff
McKoon, 2008), coupled with a Bayesian readout for confidence

Kiani & Shadlen, 2009; Moreno-Bote, 2010; Sanders et al., 2016).
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The novelty of our contribution is our combination of three aims:
To derive expressions for confidence within normatively prescribed
frameworks for decision making and metacognitive evaluation; to go
beyond simply fitting to aggregated confidence reports and instead
develop methods capable of tractable fits to (and predictions about)
individual confidence reports (Park et al., 2016); and to provide a
flexible modelling framework that can incorporate (and estimate the
impact of) several factors recently shown or hypothesised to influence
confidence reports. A key feature of our approach is that we derive
expressions for the probability distribution over confidence reports
(given decisions and response times) rather than focusing on first-order
decisions and response-times themselves. Such expressions can be used
as the basis for model fitting and parameter estimation, while avoiding
the computational cost of making trial-by-trial predictions for decisions
and response times (Ratcliff, 1980; Shan et al., 2019; Smith, 2000;
Smith & Ratcliff, 2022).

It is important to ask at the outset why we would want to derive
explicit mathematical expressions that are computationally cheap to
evaluate, when computational modelling can often be performed in
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other ways. This exercise has two main purposes: We aim for computa-
tionally cheap predictions to make trial-by-trial modelling of stochasti-
cally fluctuating stimuli feasible, and we aim for explicit mathematical
expressions to gain deeper insight into the nature of confidence in an
important model. Explicit mathematical expressions provide immediate
knowledge of the relationships between different parameters and vari-
ables, and how they combine to produce confidence. Indeed, we will
see that we can go further and interpret such expressions to understand
why different variables have the effect they do (Section 4). Regarding
our other motivation, making trial-by-trial modelling feasible, such
modelling allows us to capitalise on variability in stimuli, rather than
ignoring it or treating it as noise (Park et al., 2016). When modelling
on a trial-by-trial basis, a model that can capture the specific effects of
each stimulus will outperform a model that can only capture general
patterns in confidence across conditions (such as condition means or
distributions of aggregated confidence reports). Hence, computation-
ally cheap expressions may facilitate the development and testing of
models for confidence that make increasingly precise predictions for
behaviour.

The DDM is one of the most prominent models of two-
alternative decisions, from a family of models in which observers
receive noisy measurements of evidence for the two options (Bogacz
et al., 2006; Green & Swets, 1966; Ratcliff & McKoon, 2008). In
the DDM, observers track the difference in evidence measurements
between the two options. That is, for each sample, observers subtract
the measurement for option B from the measurement for option A,
and add this to a running total (Ratcliff & McKoon, 2008). When the
accumulator tracking this difference reaches a fixed threshold (positive
or negative), a response is triggered. The DDM has successfully been
used to model decisions in a wide range of tasks (Ratcliff et al., 2016).

The DDM is also a normative model of decision making. By ‘‘norma-
tive’’ and ‘‘optimal’’ we refer to observers that, using the information
assumed available to them, maximise reward rate (Rahnev & Denison,
2018). Under certain conditions, such as evidence measurements for the
two options being equally reliable and signal strength known, the DDM
is equivalent to tracking the posterior probability of each option until
a fixed threshold on these probabilities is reached (Bitzer et al., 2014;
Gold & Shadlen, 2007; Moran, 2015). In such a context, this policy
maximises reward rate (Moran, 2015; Wald & Wolfowitz, 1948). When
signal strength is unknown, a time-dependent threshold is required, but
under standard assumptions it nevertheless remains optimal to track
the difference between the two accumulators (Drugowitsch et al., 2012;
Moran, 2015; Tajima et al., 2019). For an intuition of why this policy
is optimal, consider a case in which the observer has not made a
decision after lengthy deliberation. The observer must be accumulating
evidence very slowly, suggesting to them that signal strength is very
low. If the observer thinks signal strength is very low, there is almost
nothing to gain from collecting more evidence measurements, so they
should lower their decision threshold and make an immediate decision
(Malhotra et al., 2017).

Although the DDM has optimal characteristics, and has been suc-
cessfully applied to a wide range of decisions (Ratcliff et al., 2016),
it is not clear the DDM provides an adequate account of confidence
reports. Different ways of modelling confidence using the DDM have
been proposed (Yeung & Summerfield, 2014). In one set of models,
observers use some form of heuristic, based on variables which are
directly accessible in the DDM, such as the state of the accumulator
(Pleskac & Busemeyer, 2010), or the time taken to make a decision
(Zylberberg et al., 2012). Another approach is to assume that observers
map the state of the accumulator, and the time spent accumulating
evidence, to the probability they are correct (Kiani et al., 2014; Kiani
& Shadlen, 2009; Moreno-Bote, 2010). A Bayesian readout of this kind
could be learned over time, through the association of accumulator
state and time with success or failure (Kiani & Shadlen, 2009). Al-
ternatively, a Bayesian readout could reflect a probabilistic inference
2

made using knowledge of the statistical structure of the task. One
detail to consider is that the confidence readout could be based on a
separate evidence accumulator to the one used for the decision, or on
multiple evidence accumulators (Balsdon et al., 2020; Fleming & Daw,
2017; Ganupuru et al., 2019; Jang et al., 2012; Ratcliff & Starns, 2009,
2013). However, here we make the simplest assumption that decisions
and confidence are based on the same, single, normative, evidence
accumulator (Moreno-Bote, 2010).

There are several techniques that can be used to calculate the
probability, according to the DDM, of different responses and response
times (Brown et al., 2006; Chang & Cooper, 1970; Cox & Miller, 1965;
Diederich & Busemeyer, 2003; Drugowitsch, 2016; Navarro & Fuss,
2009; Shinn et al., 2020; Smith, 2000; Tuerlinckx, 2004; Tuerlinckx
et al., 2001; Voss & Voss, 2008). Importantly, approaches have been
developed that can handle dynamic stimuli (stimuli that change over
the course of a trial) and time-dependent thresholds. One approach in-
volves using finite difference methods to approximate the evolution of
the probability distribution over accumulator state (which reflects the
accumulated difference in evidence measurements; Chang & Cooper,
1970; Shinn et al., 2020; Voss & Voss, 2008; Zylberberg et al., 2018).
Time and space are discretised and, working forward from the first time
step, we solve a set of simultaneous equations at each time step to find
the evolution of the probability distribution over accumulator state.
If we are only interested in the probability distribution over response
times and choices, we can use expressions described by Smith (2000).
To evaluate these expressions we only need to discretise time, not
space. Again working forward from the first time step, we can calculate
the probability of deciding at each time step. Both approaches require
that we discretise the time course of a trial into small time steps, and
the number of computations required will scale with the number of
time steps considered. Hence, in both approaches, we must perform a
large number of computations (unless we use a task and stimulus in
which modelling with large time steps is justified; Park et al. (2016)).

This computational cost becomes important if we want to leverage
the trial-by-trial variability inherent in stimuli that fluctuate stochas-
tically within individual trials. (Practical solutions for trial-by-trial
modelling already exist for static stimuli under certain conditions; e.g.
Wiecki et al. (2013).) Often the computation time needed for calcu-
lating predictions is reduced by making predictions on a condition-by-
condition basis (Park et al., 2016; e.g. van den Berg, Anandalingam,
et al., 2016; Kiani et al., 2014; Ratcliff & McKoon, 2008; Zylberberg
et al., 2016). We design the experiment so that there are a small number
of different conditions (e.g., levels of stimulus contrast), then we treat
all trials from a single condition as the same, and make predictions for
behaviour in each condition, rather than for each stimulus individually.
This approach does not capitalise on the trial-by-trial variability of the
stochastically fluctuating stimuli that are often used (for model-free
analyses that do capitalise on trial-by-trial variability see Charles and
Yeung (2019), Kiani et al. (2008), Zylberberg et al. (2012)). A method
that reduced the computational cost of making trial-by-trial predictions
for stochastically fluctuating stimuli could allow us to perform model
fitting that capitalises on rather than discards the rich data produced
from such stimuli.

Another approach is to derive explicit mathematical expressions
for model predictions, which could dramatically reduce computation
time. Moreno-Bote (2010) derived expressions for confidence that take
into account time-dependent thresholds, and that could be extended to
account for stochastically fluctuating stimuli of the kind we consider
below. However, these derivations use two assumptions about the com-
putation of confidence which are not in line with recent findings. First,
Moreno-Bote (2010) made the intuitive assumption that decisions and
confidence are based on the same information. However, as sensory and
motor processing takes time, there will be stimulus information in these
processing ‘‘pipelines’’ that does not contribute to the initial decision,
but that nevertheless informs subsequent confidence judgements (van
den Berg, Anandalingam, et al., 2016; Charles & Yeung, 2019; Moran

et al., 2015; Ratcliff & McKoon, 2008; Resulaj et al., 2009; Yu et al.,
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Fig. 1. Probability distributions over accumulator state before and after a decision. Even if increments in the accumulator are normally distributed, prior to a decision the
probability distribution over the state of the accumulator quickly becomes non-normal. This is because, if we get to time 𝑡 without a decision, we know the accumulator has not
been beyond either decision threshold prior to 𝑡. Following a decision (the time of which is represented by the dot in the right panel), normally distributed increments in the
ccumulator lead to a normal distribution over accumulator state, because there are no longer decision thresholds.
015). For example, Yu et al. (2015) found evidence that stimulus
rocessing following a decision contributes to confidence, regardless
f whether or not the stimulus continues to be presented, consistent
ith a processing pipeline. Moreover, information in the processing
ipeline is affected by trial-to-trial fluctuations in signal strength, and
his may have important effects on confidence (Pleskac & Busemeyer,
010). Second, there is now substantial evidence that the process
hat ‘‘reads out’’ confidence into a behavioural report is corrupted
y ‘‘metacognitive noise’’ (Bang et al., 2019; van den Berg et al.,
017; De Martino et al., 2013; Maniscalco & Lau, 2012, 2016). This
dditional noise in the readout may reflect imperfections in the transfer
f information between decision and metacognitive processes (Bang
t al., 2019; De Martino et al., 2013), or may be because confidence
eports themselves are sensitive to factors outside of the first-order
ecision process (Maniscalco et al., 2017; Rahnev et al., 2015; Shekhar
Rahnev, 2020). We aim for mathematical expressions that take these

mportant features into account.
A key idea that affects the scope of our derivations is that, whereas

t may be very difficult or impossible to derive simple expressions
or decisions and response times, it may be much simpler to find ex-
ressions for confidence (given a specific decision and response time).
rior to a decision, even if changes to the state of the accumulator
re normally distributed over small intervals of time, the probability
istribution over the state of the accumulator will not be normal. This
s because, having reached a time 𝑡 without a response, we know that
he accumulator is not beyond either threshold, nor has it been at
ny point up to 𝑡 (otherwise the observer would already have made
decision; Moreno-Bote (2010)). This constraint results in non-normal
robability distributions over accumulator state (Fig. 1A), with associ-
ted mathematical expressions that either feature infinite summations,
r may even be intractable (Ratcliff, 1980). In contrast, it is much
impler to express confidence directly, in terms of the evolving state of
he accumulator following a decision. Either on the basis of the central
imit theorem, or the results of Ratcliff (1980), we expect a normal
istribution over the state of the evidence accumulator when decision
hresholds are absent, even if evidence signal strength varies within a
rial (as would be the case for stochastically fluctuating stimuli). We
uild on this work by considering confidence in the related situation
f evidence accumulation following a decision threshold crossing. This
ituation turns out to be more complex, nevertheless – following a
3

ecision – decision boundaries are no longer relevant, hence normally
distributed changes in the state of the accumulator lead to a normal
distribution over this state (Fig. 1B). Crucially, our aim will be to find
probability distributions for confidence, given that a specific decision
was made at a specific time, i.e., given that a decision threshold
has already been crossed. As a result, we will not have to take into
account the non-normal probability distributions that characterise non-
terminated decision processes. Thus, our contribution is not to provide
new expressions for the probability distribution over response times
and decisions in diffusion models. We aim to bypass the complexities
associated with response times and decisions, and instead focus on
confidence.

Using this strategy we derive approximate expressions for the prob-
ability, according to the DDM, of different confidence reports, given
the response and response time on a trial. As discussed, the framework
of the DDM with possibly time-dependent thresholds, includes (under
standard assumptions) the optimal decision policy, whether or not
signal strength is known by the observer. Confidence is allowed to be
a noisy readout of the probability of being correct, and we account
for the effects of pipeline evidence, and variability in signal-to-noise
ratio. The derived expressions only need evaluating once per trial,
instead of at each very small time step within each trial, and allow
for stochastically fluctuating stimuli of a certain form, thereby making
trial-by-trial modelling of such stimuli feasible. As discussed, making
trial-by-trial modelling feasible is one of our main aims. Once we have
derived mathematical expressions for confidence, we will additionally
be able to use them to gain deeper insight into the nature of confidence
within the framework of the normative DDM.

2. Model

Overview

Our aim is to derive expressions for the probability distribution
over confidence, given the response and response time on a trial. To
derive these predictions we must first specify a model for decisions
and confidence, and the context in which that model is to be ap-
plied. The equations in the following subsections formalise a generic
two-alternative decision making task with stochastically fluctuating
evidence, and specify a model that conforms to the well-established
ideas of the DDM (Ratcliff & McKoon, 2008; Ratcliff et al., 2016).

This DDM-based model features some natural extensions – inspired by
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Fig. 2. The model of confidence and decisions. Stochastically fluctuating evidence is presented for the two response options. For example, the observer may be presented with
two clouds of dots that fluctuate each stimulus frame, and have the task of determining which cloud contains more dots on average. The observer receives noisy measurements of
the difference in stimulus evidence, and accumulates these measurements to make their choice. In the interrogation condition, the duration of the stimulus is set by the researcher.
The observer accumulates noisy measurements until the stimulus ends and all evidence is processed. Then the observer simply picks the option that is favoured by the accumulated
measurements. In the free response condition, the observer uses decision thresholds, one for each option, which trigger a response. Following a decision, evidence measurements
in the processing pipeline are accumulated, and confidence is informed by the accumulator state at the time of threshold crossing, plus changes to the accumulator caused by
evidence measurements from the pipeline.
previous work – to deal with the possibility of stochastically fluctuating
evidence (Drugowitsch et al., 2012; Ratcliff, 1980; Smith, 2000). Fi-
nally, a confidence readout is specified, which is based on the common
idea that observers read out the probability they are correct (Kiani
et al., 2014; Moran, 2015; Pew, 1969; Sanders et al., 2016).

We consider a situation in which observers must make a choice be-
tween two alternatives. The presented stimulus provides two evidence
signals (i.e., the stimulus contains two decision-relevant features), one
for each option, and the evidence provided by the stimulus (i.e., the
decision-relevant features) can fluctuate stochastically over time within
a trial (Fig. 2; Bogacz et al., 2006; Moreno-Bote, 2010). For example,
the observer might be presented with two clouds of dots, with the
number of dots in each cloud constantly changing. Their task might be
to determine which of the two clouds contains the most dots on average
(Charles & Yeung, 2019; Pleskac et al., 2023, 2019; Zeigenfuse et al.,
2014). Here the dots in the two clouds would correspond to the two
streams of evidence. We assume that the observer only receives noisy
measurements of the presented evidence (Green & Swets, 1966; Ratcliff
& McKoon, 2008). In our model, consistent with the DDM, the observer
takes the difference between the noisy measurements of evidence for
the two options, and accumulates this difference (Fig. 2).
4

A further point worth mentioning at the outset is that we only
aim to model a certain kind of stimulus. We focus on stimuli, and
stimuli durations, for which perceptual integration can plausibly be
ignored. As a result, we do not model a perceptual integration stage
that operates on the perceptual input (e.g., by applying a low pass filter)
before it enters the evidence accumulation (Smith & Ratcliff, 2009). The
question of whether perceptual integration needs to be modelled has
been explored in the context of response and response time models, and
the answer appears to depend on the task used (Smith & Ratcliff, 2022).
For example, Smith and Ratcliff (2022) found no strong evidence for
extended perceptual integration in tasks involving 20 Hz flashing grids
of squares, where the aim was to determine the predominant colour or
brightness, whereas Smith and Lilburn (2020) reported that accounting
for the effects of perceptual integration leads to better fitting models for
the random dot motion task (see Kiani et al., 2008). We return to this
point in the discussion.

Typically, following stimulus onset, a participant can respond when-
ever they wish. Some instruction or incentive may be given to respond
in a certain way, such as fast and accurately, but beyond this the
participant is free to set the time of response (e.g. Ratcliff & McKoon,
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Table 1
Symbols used in the derivations, along with key abbreviations.

Symbol Meaning

𝑆 Stimulus (1 or 2)
𝑅 Response (1 or 2)
𝐶 Confidence

𝜇 Difference between mean stimulus evidence for the two options
𝛥𝜇 Absolute value of the difference between the two means

𝐸𝑖 Difference in evidence presented in stimulus frame 𝑖
𝛿𝐸𝑖 Difference in evidence presented in time step 𝑖.

Note, 𝐸𝑖 =
∑

𝑗 𝛿𝐸𝑗 (sum taken over time steps in a frame)
𝐸 Sum over all 𝐸𝑖
𝑬 Vector of all 𝐸𝑖

𝐸 Average difference in evidence between the two options, prior to decision
𝛥𝐸 Sum over 𝛿𝐸𝑖 for time steps following the decision. Note 𝛥𝐸2 indicates (𝛥𝐸)2.

𝜑 Drift-rate scaling
𝛿𝑥𝑖 Difference between the evidence measurements in time step 𝑖
𝜹𝒙 Vector containing 𝛿𝑥𝑖 for every 𝑖
𝑥 Accumulated difference in measurements, ∑𝑖 𝛿𝑥𝑖
𝑥𝑑 The value of 𝑥 at 𝑡𝑑 (i.e. height of relevant decision threshold at this time)
𝛥𝑥 The change in 𝑥 following a decision
𝑥𝑙𝑝 Scaled log-posterior ratio
𝑥𝑐 Noisy measurement of 𝑥𝑙𝑝 which determines confidence
𝑑𝑖 Boundaries on 𝑥𝑐 which separate confidence reports falling into different bins

𝜎𝐸 Standard deviation of evidence in a frame
𝜎𝑎𝑐𝑐 Standard deviation of accumulator noise
𝜎𝜑 Standard deviation of 𝜑
𝜎𝑚 Standard deviation of metacognitive noise

𝑡𝑓 Duration of a frame
𝑡𝑒 Duration of evidence presentation
𝑡𝑑 Duration from onset of accumulation to first crossing of a decision threshold
𝑡𝑟 Response time

(In free response condition 𝑡𝑟 = 𝑡𝑒 = 𝑡𝑑 + 𝐼 ; in interrogation condition 𝑡𝑟 = 𝑡𝑒 + 𝐼)
𝐼 The duration of the evidence pipeline

Symbol Abbreviates

𝜈 𝜑𝜇∕𝑡𝑓
𝜈0 𝛥𝜇∕𝑡𝑓
𝜎𝜈 𝜈0𝜎𝜑
𝑠2 𝜎2

𝑎𝑐𝑐 + (𝜎2
𝐸∕𝑡𝑓 )

𝜃(𝑡) (𝑠2 + 𝑡𝜎2
𝜈 )∕(𝑠

2 + 𝜎2
𝜈 )

𝐾 (𝑠2 + 𝜎2
𝜈 )∕2𝜈0
2008). The stimulus continues to be presented until a response is made.
We call this condition ‘‘free response’’ (but it is also referred to as
the ‘‘information controlled’’ condition elsewhere; Bogacz et al. (2006),
McMillen and Holmes (2006), Ratcliff (1980)). Following the DDM, we
assume the observer sets two thresholds on the accumulator state, one
for each choice (Bogacz et al., 2006; Ratcliff & McKoon, 2008). When
the accumulator reaches one of these thresholds, the corresponding
response is triggered (Fig. 2). As discussed in Section 1, measurements
corresponding to evidence that has recently been presented will still
be in sensory and motor processing pipelines at the time of response,
and hence will not contribute to a decision (Resulaj et al., 2009). These
measurements will be processed immediately following a response, and
will be used to inform confidence (van den Berg, Anandalingam, et al.,
2016).

We also consider the ‘‘interrogation’’ condition (McMillen & Holmes,
2006), where the observer must respond at a time controlled by the
researcher. (This and closely related conditions are also referred to as
‘‘time controlled’’ and ‘‘response signal’’ conditions; Dosher (1976), Rat-
cliff (1980, 2006), Schouten and Bekker (1967), Usher and McClelland
(2001).) In this case the stimulus is presented for a finite amount of
time. Before the stimulus clears the participant cannot respond. Once
the stimulus clears, the observer uses the final state of the accumulator
(which reflects all evidence presented in the stimulus) to determine
their response (Fig. 2; Bogacz et al., 2006). Although we will focus on
this decision making strategy, which is normative in the absence of a
cost associated with accumulating evidence (Bogacz et al., 2006), we
note that an alternative modelling choice would be to also include the
idea of decision thresholds in the interrogation condition, assuming that
5

if a decision threshold is reached people stop accumulating evidence
and withhold their response until the appropriate time (Balsdon et al.,
2020; Ratcliff, 2006). Such a strategy would become normative if
there was an intrinsic cost to accumulating evidence (beyond the cost
associated with spending time on the task, which is not under the
control of the observer in this condition; Kiani et al., 2008). There is
evidence that careful selection of when response times are enforced in
the interrogation condition can minimise this possibility (Rosenbaum
et al., 2022). In both the free response and interrogation conditions, the
observer uses a Bayesian readout of confidence which depends on the
final state of the accumulator once all evidence has been processed, and
the time spent accumulating evidence (Kiani et al., 2014; Moreno-Bote,
2010).

In the following subsections we first describe the observer’s task
mathematically, before looking at the rule a Bayesian observer would
use to map evidence measurements to a decision and confidence.
Finally, we describe the noisy ‘‘read out’’ process which determines
confidence reports (Fleming & Daw, 2017). In Section 3 we turn to
the main aim of the paper, which is to use the drift diffusion frame-
work to derive simple expressions for the probability distribution over
confidence reports, given a response and response time. A summary of
symbols used in the derivations can be found in Table 1. We use the
convention that log refers to the natural logarithm.

Task

The observer’s task is to determine the correct response, by infer-
ring which evidence stream (i.e., which decision-relevant feature of
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the stimulus) is drawn from the distribution with the greater mean
(Bogacz et al., 2006; Moreno-Bote, 2010). As we are considering a
DDM observer who tracks the difference in the evidence measurements
for the two alternatives, we only need to consider the difference in
evidence provided by the two evidence signals from the stimulus.

We consider the case where the two options are equally probable.
Denote the mean evidence for the two options, 𝜇1 and 𝜇2, and the
difference between these means, 𝜇 = 𝜇2 − 𝜇1. These values are fixed
throughout an individual trial. We consider a situation in which the
absolute value of the difference between the two means is the same
for all trials. However, we incorporate variability in signal strength
below (see discussion of variability in drift-rate scaling, 𝜑). Let 𝛥𝜇
denote a fixed positive value which determines the absolute value of
the difference between the two means. This setup gives us,

𝑝(𝑆 = 1) = 𝑝(𝑆 = 2) = 1
2

(1)

𝜇 =

{

−𝛥𝜇 if 𝑆 = 1
𝛥𝜇 if 𝑆 = 2

. (2)

𝑆 denotes the stimulus (1 or 2) with the greater mean evidence, and
hence the correct answer.

Denote the total time during which the stimulus is presented 𝑡𝑒, and
he time of the response relative to the beginning of the trial 𝑡𝑟. In

the free response condition 𝑡𝑒 = 𝑡𝑟 because a response triggers the end
of the stimulus. For the free response condition we have to consider
the effects of the decision thresholds (discussed above). Denote the
time spent accumulating measurements prior to the first crossing of a
decision threshold, 𝑡𝑑 . A threshold crossing triggers a response. How-
ever, because of delays in sensory and motor processing, there is a lag
between the point of internal commitment to a decision and the point at
which that decision is externally registered via an overt movement, and
even at the point of the overt response some recently received sensory
evidence will still be being processed (Luce, 1986; Resulaj et al., 2009).
Hence, information presented in the stimulus immediately prior to the
response will not contribute to the decision. Denote the duration of the
stimulus immediately prior to the response that does not contribute to
the decision, because corresponding measurements are still in process-
ing pipelines, 𝐼 . The time spent accumulating evidence until the first
decision threshold crossing and the duration of the processing pipeline,
will together equal the time taken to respond, 𝑡𝑟 = 𝑡𝑑 + 𝐼 .

In the interrogation condition the observer uses all information
presented in the stimulus – by accumulating evidence for a duration
equal to the duration of evidence presentation – to determine both their
response and confidence (Bogacz et al., 2006). Once all evidence has
been accumulated, after 𝑡𝑒, a response is then triggered. We make the
natural assumption that sensory and motor processing delays are of the
same duration in both the interrogation and free response conditions,
although in the interrogation condition no further information is gath-
ered during this time because the stimulus is no longer being presented.
In this condition, response time is therefore given by 𝑡𝑟 = 𝑡𝑒 + 𝐼 .

We consider here the general case of a stimulus that provides
vidence that varies stochastically over time within a trial (Fig. 2). Our
erivations also apply to constant evidence as a special case of fluc-
uating evidence. We consider evidence (conveyed through decision-
elevant features of the stimulus) that is piecewise-constant within
hort stimulus ‘‘frames’’ of duration 𝑡𝑓 . During each short stimulus

frame the stimulus is static, and hence so too are the decision-relevant
features of the stimulus, and the evidence provided by the stimulus. We
use 𝐸𝑖 to denote the evidence presented for option 2 minus the evidence
presented for option 1 (i.e., the difference in evidence) during frame
𝑖. If the difference in evidence presented in each frame is normally
distributed around the underlying mean, 𝜇, then we have,

𝑝(𝐸𝑖|𝜇) = 𝑁(𝐸𝑖;𝜇, 𝜎2𝐸 ) , (3)

where 𝜎2𝐸 is the variance over the presented difference-in-
evidence. Note that 𝜇 does not correspond to anything the observer
6

directly observes. As discussed, 𝜇 is the underlying mean difference-in-
evidence presented for the two options, and is constant throughout a
trial. The actual presented evidence, 𝐸𝑖, is what varies over the course
of a trial (or more precisely it varies from stimulus frame-to-frame),
and is drawn from a distribution centred on the underlying means.

As in the DDM, the presented evidence drives an internal evidence
accumulation that is subject to normally distributed noise (Ratcliff &
McKoon, 2008). We also take into account the fact that the stimulus
fluctuates stochastically within each trial: Each stimulus frame drives
the evidence accumulation for a duration equal to the duration that
frame is presented for. As discussed above, we assume the effects of
any pre-decision perceptual integration stage can be ignored (Smith
& Ratcliff, 2022). Consider a discretisation of time into very short
time steps (much shorter than the duration of a frame) of duration
𝛿𝑡. Over a small time step, 𝑗, the incremental change in the state of
the accumulator tracking the difference in evidence measurements,
denoted 𝛿𝑥𝑗 , can be described by,

𝑝(𝛿𝑥𝑗 |𝛿𝐸𝑗 , 𝜑) = 𝑁(𝛿𝑥𝑗 ; 𝛿𝐸𝑗𝜑, 𝜎
2
𝑎𝑐𝑐𝛿𝑡) , (4)

where 𝜎2𝑎𝑐𝑐 is the variance of noise in the accumulation (Drugowitsch
et al., 2012). 𝛿𝐸𝑗 indicates the difference-in-evidence presented in time
step 𝑗 only, not over the course of a frame, and is determined by
the stimulus frame currently being processed (𝐸𝑖 =

∑

𝑗 𝛿𝐸𝑗 where the
summation is taken over all the time steps in a stimulus frame). 𝜑 is a
andom variable which accounts for variability in drift rate. ‘‘Drift rate’’
efers to the rate at which evidence presented in the stimulus drives
he accumulation of evidence measurements (Ratcliff & McKoon, 2008).

here a stimulus, and hence drift rate, is constant over the course of a
rial, drift rate variability is trial-to-trial variability in this rate (Ratcliff,
978; Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Voskuilen et al.,
016). Here, where stimulus evidence, and hence drift rate, fluctuate
tochastically over the course of each trial, we operationalise drift rate
ariability as a multiplicative factor that determines how well stimulus
nformation is processed. To distinguish this operationalisation from
he usual operationalisation, we sometimes refer to the multiplicative
actor 𝜑 as the ‘‘drift-rate scaling’’, because we set the mean value
f this variable to be one regardless of the strength of the presented
vidence. When the drift-rate scaling is high, the signal extracted from
he stimulus is greater, and evidence is accumulated rapidly. Noise in
he accumulation is unaffected, hence, a higher drift-rate scaling also
eads to a higher signal-to-noise ratio.

It is usually assumed that drift rate variability follows a normal
istribution (Ratcliff, 1978; Ratcliff & McKoon, 2008). We make the
ame assumption here,

(𝜑) = 𝑁(𝜑; 1, 𝜎2𝜑) . (5)

o be clear, drift-rate scaling is constant throughout an individual trial,
ut may vary from trial-to-trial.

bserver

This largely standard task setup generates a standard inference
roblem for observers, that can be summarised as follows (derivation in
upplement Section B). Observers are aiming to infer 𝑆, which affects
he average rate of evidence accumulation, 𝜈 (Table 1), via

(𝜈|𝑆 = 1) = 𝑁(𝜈; −𝜈0, 𝜎2𝜈 ) (6)

(𝜈|𝑆 = 2) = 𝑁(𝜈; 𝜈0, 𝜎2𝜈 ) . (7)

ncrements in the evidence accumulation are related to 𝜈 via,

(𝛿𝑥𝑖|𝜈) = 𝑁(𝛿𝑥𝑖; 𝜈𝛿𝑡, 𝑠2𝛿𝑡) . (8)

he inference problem described by (6), (7) and (8) does not perfectly
atch the true generative model. Specifically, to arrive at this infer-

nce problem we make the plausible assumptions that (a) observers
gnore the fact that evidence (conveyed by decision-relevant features



Journal of Mathematical Psychology 117 (2023) 102815J. Calder-Travis et al.

u
e

𝑥

w

𝑓
c
a
s

b

p
p
t
m
c

of the stimulus) is constant within each static stimulus frame, and
(b) observers ignore the increased effect of variability in the stimulus
when the drift-rate scaling is high, and the decreased effect when
the drift-rate scaling is low (Supplement Section B). In Supplement
Section B we verify that for an observer with such beliefs, confidence
and performance remain closely aligned.

Given the above inference problem, the observer can compute a
scaled version of the log-posterior ratio, 𝑥𝑙𝑝, using the sum of accu-
mulated evidence 𝑥 =

∑𝑁
𝑖=1 𝛿𝑥𝑖 over all timesteps of the accumulation

p to the present timestep, 𝑁 , and the time spent accumulating that
vidence, 𝑡 (Supplement Section B),

𝑙𝑝 =
𝑥
𝜃(𝑡)

, (9)

here 𝜃() is an abbreviation, and specifically 𝜃(𝑡) = (𝑠2 + 𝑡𝜎2𝜈 )∕(𝑠
2 + 𝜎2𝜈 ).

A Bayesian observer would report whichever option is more likely.
Hence, they will report 𝑆 = 1 when 𝑥𝑙𝑝 < 0, or 𝑥 < 0. Denote this
report 𝑅 = 1, and a report for 𝑆 = 2 as 𝑅 = 2. In the interrogation
condition, the observer simply has to wait for the stimulus to end
at 𝑡𝑒. Once the observer has processed and accumulated all evidence
measurements, the observer can respond according to the sign of the
final accumulator state, 𝑥 (Fig. 2). In the free response condition, the
observer uses a decision threshold for triggering a response (Bogacz
et al., 2006; Ratcliff & McKoon, 2008). This threshold describes an
absolute value of the accumulator, |𝑥|, which triggers a response when
reached. We allow the threshold to vary with time (Drugowitsch et al.,
2012). As discussed, at the time of response, measurements corre-
sponding to recently presented evidence will still be in the processing
pipeline (Resulaj et al., 2009). The response will be based on 𝑥 at the
time of the decision, 𝑡𝑑 , while confidence will incorporate additional
pipeline evidence measurements (Fig. 2). Processing will continue until
measurements from the full duration of stimulus presentation, 𝑡𝑒, have
been processed.

The (scaled) lot-posterior ratio can be used by observers to compute
confidence, because it is monotonically related to the probability that
they are correct (Supplement Section B). If the observer reports 𝑅 = 2
then a more positive value of 𝑥𝑙𝑝 is associated with a greater probability
of being correct. The direction is reversed for 𝑅 = 1 choices.

We do not assume that confidence is a direct readout of the (scaled)
log-posterior ratio. Instead, we allow the possibility that metacognitive
noise corrupts this estimate (De Martino et al., 2013; Maniscalco &
Lau, 2012, 2016), and hence that confidence is based on a noisy
representation of 𝑥𝑙𝑝, denoted 𝑥𝑐 ,

𝑝(𝑥𝑐 |𝑥𝑙𝑝) = 𝑁(𝑥𝑐 ; 𝑥𝑙𝑝, 𝜎2𝑚) , (10)

where 𝜎𝑚 is the standard deviation of metacognitive noise. (Note that
this noisy readout of the scaled log-posterior ratio, is equivalent to a
scaled version of a noisy readout of the unscaled log-posterior ratio;
Supplement Section D.)

We would also like to minimise the number of assumptions we
make about how 𝑥𝑐 is transformed into a confidence report. There is
evidence that different people use confidence scales in different ways
(Ais et al., 2016; Festinger, 1943; Navajas et al., 2017). To make
minimal assumptions about how people view and treat confidence
scales, we treat confidence reports, 𝐶, as ordinal data only (Aitchison
et al., 2015). Confidence reports on a continuous scale can be analysed
by binning them first.

If people report greater confidence when 𝑥𝑐 favours their decision
to a greater extent, then all confidence reports falling into a higher
confidence bin will have come from further along the 𝑥𝑐 scale (in
the direction that favours the choice made). Using 𝑑𝑖 we denote the
boundary on 𝑥𝑐 which separates the confidence reports which fall into
confidence category 𝐶 = 𝑖 − 1 from 𝐶 = 𝑖, when the observer reports
𝑅 = 2. When 𝑅 = 1, the boundary applies to −𝑥𝑐 , or equivalently, a
7

boundary of −𝑑𝑖 is applied to 𝑥𝑐 .
Table 2
Model parameters for fitting to data. The predictions for confidence depend on these
parameters, but this dependence is kept implicit throughout for readability (i.e., a
symbol for the set of parameters is not explicitly included when writing out conditional
probabilities). The table states ‘‘Parameter/feature’’ because 𝑓 (𝑡𝑑 ) is not a parameter.
(𝑡𝑑 ) describes how the shape of the decision threshold changes over time. The modeller
an parameterise this function as they wish. For example, they could use a flat threshold
nd simply fit threshold height, or they could use a complicated curved threshold with
everal parameters.
Parameter/feature Free response Interrogation

Accumulator noise 𝜎𝑎𝑐𝑐 ✓ ✓

Drift-rate variability 𝜎𝜑 ✓ ✓

Metacognitive noise 𝜎𝑚 ✓ ✓

Confidence boundaries 𝑑𝑖 (for all 𝑖) ✓ ✓

Duration of evidence pipeline 𝐼 ✓ –
Decision threshold shape 𝑓 (𝑡𝑑 ) ✓ –

3. Results

We now have a complete description of the model, and everything
we need to derive the probability distribution over confidence reports
in both the interrogation and free response conditions. We would like
to find the probability distribution over confidence, given the evidence
presented, 𝑬, the response, 𝑅, and in the free response condition, the
amount of time the observer monitors the stimulus before making a
response, 𝑡𝑟. (𝑬 is a vector containing every 𝐸𝑖.) A key variable is the
observer’s (scaled) log-posterior ratio after they have seen all evidence,
𝑥𝑙𝑝. Our general strategy will be to find a probability distribution
over this variable. From this distribution we will be able to infer a
distribution over the noisy readout of the (scaled) log-posterior ratio,
𝑥𝑐 . As described in the previous section, on a trial with a response
𝑅 = 2, if 𝑥𝑐 falls between 𝑑𝑖 and 𝑑𝑖+1 the observer reports confidence
𝐶 = 𝑖. If 𝑅 = 1, the boundaries are −𝑑𝑖+1 and −𝑑𝑖. The probability of
a confidence report 𝐶 = 𝑖 will be given by the probability that 𝑥𝑐 falls
etween the corresponding boundaries (Fig. 3).

Throughout we keep the dependence of the predictions on model
arameters implicit: The probability distribution over confidence re-
orts depends not just on the evidence presented, the response, and
he time spent monitoring the stimulus, but also the parameters of the
odel. For the sake of readability this dependence is kept implicit in

onditional probabilities in the derivations. (E.g., we write 𝑝(𝐶|𝑅, 𝑡𝑟,𝑬)
instead of 𝑝(𝐶|𝑅, 𝑡𝑟,𝑬, 𝛯), where 𝛯 represents the set of parameters.)
However the parameters on which the predictions depend are of course
of great practical importance. It will be these parameters that we adjust
as we fit the model to data, and by constraining particular parameters
to certain values we will be able to create different variants of the
model for comparison. Parameters for fitting to data are listed in
Table 2. Decision threshold is listed but this is not in itself a parameter.
We will see that the modeller has freedom over what shape decision
threshold to use, and how to parameterise this function.

Interrogation condition

In the following section we present an overview of the derivations
for the expressions for confidence in the interrogation condition. The
complete derivation is presented in Supplement Section E.

In a trial from the interrogation condition, the stimulus is presented
for some amount of time, 𝑡𝑒. The observer can only respond after the
end of the stimulus. We aim to find the probability of confidence
reports, given the response and evidence presented. Assuming that
the response occurs at some fixed amount of time following 𝑡𝑒, the
response time provides us with no information. This is because 𝑡𝑒 is
set by the researcher, and hence is unaffected by processes internal
to the observer. A summary of the generative model for interrogation
condition confidence reports, from the perspective of the researcher, is
shown in Fig. 4.
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Fig. 3. Probability of a confidence report, based on a distribution over 𝑥𝑐 . 𝑥𝑐 is a noisy
epresentation of the (scaled) log-posterior ratio. We make no specific assumptions
bout how observers use confidence scales apart from assuming that, if the observer
eports higher confidence 𝐶, then the underlying variable 𝑥𝑐 has a greater absolute

value, in the direction corresponding to the response made. We use 𝑑𝑖 to denote the
boundaries between values of 𝑥𝑐 that lead to different confidence reports. If we know
the distribution over 𝑥𝑐 , then the probability of a specific confidence report can be
found by integrating 𝑥𝑐 or −𝑥𝑐 between the corresponding boundaries. Whether we
integrate over 𝑥𝑐 or −𝑥𝑐 depends on the response made.

Fig. 4. Representation of the generative model for confidence reports in the interroga-
ion condition, from the perspective of the researcher. We want to infer the probability
f reported confidence, using our knowledge of the evidence presented and the response
iven.

We start by integrating 𝑥𝑐 over the region which leads to a confi-
dence report 𝐶 = 𝑖. When the response is 𝑅 = 2, this is the region
between 𝑑𝑖 and 𝑑𝑖+1 (Fig. 3). The case where 𝑅 = 1 is identical except
the limits become −𝑑𝑖+1 and −𝑑𝑖. Also marginalising over, 𝑥𝑙𝑝 using
Bayes rule, and rearranging gives,

𝑝(𝐶 = 𝑖|𝑅 = 2,𝑬) = ∫

𝑑𝑖+1

𝑑𝑖
𝑑𝑥𝑐

𝛹 (𝑥𝑐 )
𝑝(𝑅 = 2|𝑬)

, (11)

here,

(𝑥𝑐 ) = ∫ 𝑑𝑥𝑙𝑝 𝑝(𝑥𝑐 |𝑥𝑙𝑝)𝑝(𝑅|𝑥𝑙𝑝)𝑝(𝑥𝑙𝑝|𝑬) . (12)

An expression for 𝑝(𝑥𝑙𝑝|𝑬) can be found by marginalising over
, using the independence of 𝑬 and 𝜑 (when not conditioned on
ther variables; see Fig. 4), and using (4), (5) and (9). Following
8

earrangement, the resulting expression is,

(𝑥𝑙𝑝|𝑬) = 𝑁(𝑥𝑙𝑝;
𝐸

𝜃(𝑡𝑒)
,
𝐸2𝜎2𝜑 + 𝑡𝑒𝜎2𝑎𝑐𝑐

𝜃2(𝑡𝑒)
) , (13)

here 𝐸 =
∑

𝑖 𝛿𝐸𝑖 (sum taken over all time steps in all relevant frames),
nd 𝑡𝑒 =

∑

𝑖 𝛿𝑡 is the duration of evidence presentation.
The simpler case in which there is no metacognitive noise (and

ence 𝑥𝑐 = 𝑥𝑙𝑝) is treated, along with the full derivations, in Supplement
ection E. Here we summarise the derivations for the more general
ase, in which the possibility of metacognitive noise is also taken into
ccount. Nevertheless, it is worth briefly noting a distinctive property of
he model when metacognitive noise is absent. The observer’s decision
ule is deterministic, and was described in Section 2. If 𝑥𝑙𝑝 < 0 the
bserver reports that 𝑅 = 1, and reports 𝑅 = 2 if 𝑥𝑙𝑝 > 0. In all cases,
he observer makes the response that is most likely to be correct. Hence,
scaled or not) the log-posterior ratio at the time of the decision always
avours the response made. Due to the absence of metacognitive noise,
𝑙𝑝 = 𝑥𝑐 , and hence 𝑥𝑐 at the time of decision also always favours the
esponse made. As a result, the observer will never report a confidence
f less than 50%. As soon as metacognitive noise is present, then it is
o longer the case that in general 𝑥𝑙𝑝 = 𝑥𝑐 , and we need to model the
ifference between 𝑥𝑙𝑝 and 𝑥𝑐 .

Returning to (12), using the relationship between 𝑥𝑙𝑝 and 𝑥𝑐 given
y (10) and using (13), we have,

(𝑥𝑐 ) = ∫ 𝑑𝑥𝑙𝑝 𝑁(𝑥𝑐 ; 𝑥𝑙𝑝, 𝜎2𝑚)𝑝(𝑅|𝑥𝑙𝑝)𝑁(𝑥𝑙𝑝;
𝐸

𝜃(𝑡𝑒)
,
𝐸2𝜎2𝜑 + 𝑡𝑒𝜎2𝑎𝑐𝑐

𝜃2(𝑡𝑒)
) . (14)

Due to the observer’s deterministic decision rule, 𝑝(𝑅|𝑥𝑙𝑝) is one when
is consistent with the (scaled) log-posterior ratio, and zero otherwise.

he product of this term and the normal distribution over 𝑥𝑙𝑝 is a nor-
al distribution truncated to the region where 𝑅 and 𝑥𝑙𝑝 are consistent.
e rewrite this expression in terms of a truncated normal distribution,
𝑁(𝑥𝑙𝑝;𝜇𝑙𝑝, 𝜎2𝑙𝑝, 𝑎, 𝑏), where 𝑎 and 𝑏 indicate the points at which the
istribution is truncated, and the first and second parameters, 𝜇𝑙𝑝 and
2
𝑙𝑝, are the mean and variance of the distribution prior to truncation,
nd therefore are,

𝑙𝑝 = 𝐸
𝜃(𝑡𝑒)

(15)

𝜎2𝑙𝑝 =
𝐸2𝜎2𝜑 + 𝑡𝑒𝜎2𝑎𝑐𝑐

𝜃2(𝑡𝑒)
. (16)

his gives,

(𝑥𝑐 ) = 𝑝(𝑅|𝑬)∫

∞

−∞
𝑑𝑥𝑙𝑝 𝑁(𝑥𝑐 ; 𝑥𝑙𝑝, 𝜎2𝑚)𝑇𝑁(𝑥𝑙𝑝;𝜇𝑙𝑝, 𝜎2𝑙𝑝, 𝑎, 𝑏) , (17)

here 𝑎 = −∞, 𝑏 = 0 for 𝑅 = 1 or 𝑎 = 0, 𝑏 = ∞ for 𝑅 = 2. These limits
ome from using that 𝑝(𝑅|𝑥𝑙𝑝) = 1 when 𝑅 and 𝑥𝑙𝑝 are consistent, and
(𝑅|𝑥𝑙𝑝) = 0 otherwise.

This integral can be performed by changing variables so that the
xpression becomes a convolution between a normal distribution and
truncated normal distribution. Let,

=

{

−1 if 𝑎 = −∞, 𝑏 = 0; i.e. 𝑅 = 1
1 if 𝑎 = 0, 𝑏 = ∞; i.e. 𝑅 = 2 ,

then the result of the convolution is (Supplement Section E),

𝛹 (𝑥𝑐 ) = 𝑝(𝑅|𝑬) 1
𝛷(𝐿 𝜇𝑙𝑝

𝜎𝑙𝑝
)
𝑁(𝑥𝑐 ;𝜇𝑙𝑝, 𝜎2𝑚 + 𝜎2𝑙𝑝)

× 𝛷

(

𝐿
𝑥𝑐𝜎2𝑙𝑝 + 𝜇𝑙𝑝𝜎2𝑚

𝜎𝑚𝜎𝑙𝑝
√

𝜎2𝑚 + 𝜎2𝑙𝑝

)

. (18)

Substituting this expression into (11), and extensively rearranging
to produce an expression that is faster to evaluate numerically, gives
the following final result for confidence,
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Fig. 5. Representation of the generative model for confidence reports in the free response condition, from the perspective of the researcher. We want to infer the probability of
reported confidence, using our knowledge of the evidence presented, the response given, and the response time.
𝑝(𝐶 = 𝑖|𝑅,𝑬) = 𝐿
𝛷(𝐿 𝜇𝑙𝑝

𝜎𝑙𝑝
)

[

𝐵𝑣𝑁
( 𝑔
√

1 + ℎ2
, 𝑒𝑖+1;

−ℎ
√

1 + ℎ2

)

− 𝐵𝑣𝑁
( 𝑔
√

1 + ℎ2
, 𝑒𝑖;

−ℎ
√

1 + ℎ2

)

]

, (19)

here,

𝑣𝑁(𝑙1, 𝑙2, 𝜌) = ∫

𝑙1

−∞ ∫

𝑙2

−∞

1
2𝜋

√

1 − 𝜌2
𝑒
− 1

2(1−𝜌2)
(𝑥2+𝑦2−2𝑥𝑦𝜌)

𝑑𝑥𝑑𝑦 , (20)

is the bivariate cumulative normal distribution, corresponding to a
distribution with mean and covariance,

𝜇 =
[

0
0

]

and 𝛴 =
[

1 𝜌
𝜌 1

]

. (21)

dditionally, 𝑔, ℎ, and 𝑒𝑖 denote 𝑔 =
𝐿𝜇𝑙𝑝

√

𝜎2𝑚+𝜎2𝑙𝑝
𝜎𝑚𝜎𝑙𝑝

, ℎ = 𝐿𝜎𝑙𝑝
𝜎𝑚

and

𝑖 =
𝐿𝑑𝑖−𝜇𝑙𝑝
√

𝜎2𝑚+𝜎2𝑙𝑝
. This integral can be numerically evaluated using standard

unctions.

ree response condition

In the free response condition we again want to find the probability
istribution over confidence reports, but now have an additional piece
f information to incorporate into our predictions, the time of the
esponse 𝑡𝑟. Response time will be determined by the evolution of the
ccumulator, and specifically, by the first time the accumulator reaches
decision threshold (Fig. 5).

Integrating 𝑥𝑐 over the region that leads to a confidence report 𝐶 = 𝑖
after 𝑅 = 2, and marginalising over 𝑥𝑙𝑝,

𝑝(𝐶 = 𝑖|𝑅 = 2, 𝑡𝑟,𝑬) = ∫

𝑑𝑖+1

𝑑𝑖
𝑑𝑥𝑐 ∫ 𝑑𝑥𝑙𝑝 𝑝(𝑥𝑐 |𝑥𝑙𝑝)

× 𝑝(𝑥𝑙𝑝|𝑅 = 2, 𝑡𝑟,𝑬) . (22)

(As before, for 𝑅 = 1 we use integration limits −𝑑𝑖+1 and −𝑑𝑖 in-
stead.) The second distribution in this expression can be obtained by
marginalising over 𝜑,

𝑝(𝑥𝑙𝑝|𝑅, 𝑡𝑟,𝑬) = 𝑑𝜑 𝑝(𝑥𝑙𝑝|𝜑,𝑅, 𝑡𝑟,𝑬)𝑝(𝜑|𝑅, 𝑡𝑟,𝑬) . (23)
9

∫

The final term is a distribution over 𝜑, the drift-rate scaling. Observers
often need to calculate the distribution over drift rate, given the evi-
dence received (Drugowitsch et al., 2012; Moran, 2015; Moreno-Bote,
2010). As researchers, we can infer the value of 𝜑 in a similar way.

Evidence presented immediately prior to a response but after the
decision point does not contribute to the response itself, as it is still
being processed (Resulaj et al., 2009). If, for an observer, the interval
of stimulus in this processing pipeline is 𝐼 , we can infer that the amount
of time they spent accumulating evidence prior to a decision, 𝑡𝑑 , is
𝑡𝑑 = 𝑡𝑒−𝐼 = 𝑡𝑟−𝐼 . Additionally, if an observer uses a decision threshold,
𝑓 (𝑡), to trigger responses 𝑅 = 2, and −𝑓 (𝑡) to trigger responses 𝑅 = 1,
then we know that at the time they made their decision 𝑡𝑑 ,

𝑥 =

{

𝑓 (𝑡𝑑 ) if 𝑅 = 2
−𝑓 (𝑡𝑑 ) if 𝑅 = 1 ,

(24)

because the time they made their decision was the time the accumulator
hit the decision threshold (Moreno-Bote, 2010). Denote the value of 𝑥
at 𝑡𝑑 by 𝑥𝑑 . Hence for known (or hypothesised) values of 𝐼 and 𝑓 (𝑡), we
can infer 𝑡𝑑 and 𝑥𝑑 from 𝑅 and 𝑡𝑟. Note that in this case we can also infer
𝑅 and 𝑡𝑟 from 𝑡𝑑 and 𝑥𝑑 . Hence, these quantities are interchangeable in

𝑝(𝜑|𝑅, 𝑡𝑟,𝑬) = 𝑝(𝜑|𝑥𝑑 , 𝑡𝑑 ,𝑬) . (25)

The probability distribution over 𝜑 will depend on the entire stream
of evidence up to the time of the decision (i.e., all elements of 𝑬 that
correspond to evidence received before a decision). This is because
measurements of all evidence prior to a decision, in conjunction with
𝜑, determine changes in the accumulator, which in turn determine the
time of the response, and response itself (see Fig. 5). However, for
the purpose of inferring 𝜑, we approximate the evidence stream by
its average prior to the time of the decision, 𝐸. We also approximate
𝑝(𝜑|𝐸) ≈ 𝑝(𝜑). 𝜑 is independent of 𝑬, but could depend on 𝐸, because
the average evidence may be related to the time of the response, which
𝜑 also affects (Fig. 5). We test the effects of these approximations once
the derivation is complete.

In Supplement Section F we show how these approximations, in
conjunction with (25), an application of Bayes rule, and considera-
tion of the set of paths that first cross the decision threshold at 𝑡𝑑
(Moreno-Bote, 2010), lead to the following expression,

𝑝(𝜑|𝑅, 𝑡𝑟,𝑬) ∝ 𝑝(𝜑)𝑁(𝜑;
𝑥𝑑 ,

𝜎2𝑎𝑐𝑐
2

) . (26)

𝐸𝑡𝑑 𝐸 𝑡𝑑
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We have an expression for 𝑝(𝜑) from (5). Using this expression,
(26) can be rearranged into a single normal distribution, as shown in
Supplement Section F.

Returning to (23), we see that in addition to an expression for
𝑝(𝜑|𝑅, 𝑡𝑟,𝑬), we need an expression for 𝑝(𝑥𝑙𝑝|𝜑,𝑅, 𝑡𝑟,𝑬). As discussed,
from the response and response time, we can infer the time spent
accumulating evidence prior to the decision, and the state of the
accumulator at the time a decision was made (Fig. 2). Following a
decision, evidence accumulation continues in the same manner as in the
interrogation condition (Pleskac & Busemeyer, 2010), until all evidence
measurements have been processed. Specifically, in the absence of
decision boundaries following a decision, the distribution over changes
in accumulated evidence is normal, with a mean matching the sum of
presented evidence modulated by the standardised drift rate, and with
a variance that grows with time. (Precisely, Eq. (73) in Supplement
Section E is valid for predicting the accumulation following decision
threshold crossing.)

Considering the time between the decision and the end of stimulus
processing (𝑡𝑑 , 𝑡𝑒), denote the accumulation in this interval, 𝛥𝑥, and
the sum over evidence presented in this interval 𝛥𝐸 =

∑

𝑖 𝛿𝐸𝑖 (the
summation is taken over all 𝑖 which correspond to time steps following
a decision). (𝛥𝐸2 indicates (𝛥𝐸)2.) We have (see Eq. (73) in Supplement
Section E),

𝑝(𝛥𝑥|𝜑,𝑬) = 𝑁(𝛥𝑥;𝜑𝛥𝐸, 𝜎2𝑎𝑐𝑐𝐼) , (27)

where 𝐼 denotes the duration of the pipeline, 𝑡𝑒 − 𝑡𝑑 . Using our knowl-
edge of the location of 𝑥 at 𝑡𝑑 , denoted 𝑥𝑑 , and that the final state of 𝑥
is given by 𝑥𝑑 + 𝛥𝑥, the distribution over the final state is given by,

𝑝(𝑥|𝜑,𝑅, 𝑡𝑟,𝑬) = 𝑁(𝑥; 𝑥𝑑 + 𝜑𝛥𝐸, 𝜎2𝑎𝑐𝑐𝐼) (28)

Using (9) we have,

𝑝(𝑥𝑙𝑝|𝜑,𝑅, 𝑡𝑟,𝑬) = 𝑁(𝑥𝑙𝑝;
𝑥𝑑 + 𝜑𝛥𝐸

𝜃(𝑡𝑒)
,
𝜎2𝑎𝑐𝑐𝐼
𝜃2(𝑡𝑒)

) (29)

We have now derived expressions for both the distributions in (23). In
Supplement Section F we perform the integral to find,

𝑝(𝑥𝑙𝑝|𝑅, 𝑡𝑟,𝑬) = 𝑁(𝑥𝑙𝑝;𝜇𝑙𝑓 , 𝜎2𝑙𝑓 ) (30)

Where,

𝜇𝑙𝑓 = 1
𝜃(𝑡𝑒)

(

𝑥𝑑 + 𝛥𝐸
𝜎2𝑎𝑐𝑐 + 𝑥𝑑𝜎2𝜑𝐸

𝜎2𝑎𝑐𝑐 + 𝑡𝑑𝜎2𝜑𝐸
2

)

(31)

𝜎2𝑙𝑓 =
𝜎2𝑎𝑐𝑐
𝜃2(𝑡𝑒)

(

𝛥𝐸2𝜎2𝜑

𝜎2𝑎𝑐𝑐 + 𝑡𝑑𝜎2𝜑𝐸
2
+ 𝐼

)

(32)

Using this result in (22), and allowing for normally distributed
metacognitive noise as in (10),

𝑝(𝐶 = 𝑖|𝑅 = 2, 𝑡𝑟,𝑬) = ∫

𝑑𝑖+1

𝑑𝑖
𝑑𝑥𝑐 ∫ 𝑑𝑥𝑙𝑝 𝑝(𝑥𝑐 |𝑥𝑙𝑝)

× 𝑝(𝑥𝑙𝑝|𝑅 = 2, 𝑡𝑟,𝑬) (33)

= ∫

𝑑𝑖+1

𝑑𝑖
𝑑𝑥𝑐 ∫ 𝑑𝑥𝑙𝑝 𝑁(𝑥𝑐 ; 𝑥𝑙𝑝, 𝜎2𝑚)

×𝑁(𝑥𝑙𝑝;𝜇𝑙𝑓 , 𝜎2𝑙𝑓 ) (34)

= ∫

𝑑𝑖+1

𝑑𝑖
𝑑𝑥𝑐 𝑁(𝑥𝑐 ;𝜇𝑙𝑓 , 𝜎2𝑙𝑓 + 𝜎2𝑚) . (35)

This expression applies for 𝑅 = 2. For the case of 𝑅 = 1 the limits
change to −𝑑𝑖+1 and −𝑑𝑖.

Thus, we have derived expressions for the probability of confidence
reports falling into each ordinal bin, given the trial-by-trial response, re-
sponse time and stimulus. We have produced such expressions for both
interrogation (19) and free response (35) decision tasks. By allowing for
the possibility of various additional features in the underlying decision
10
and confidence model, the derivations build on previous work, as set
out in further detail in the discussion below. Eqs. (19) and (35) provide
approximate expressions for confidence that only need evaluating once
per trial, with the aim of supporting feasible trial-by-trial modelling
even with stimuli that fluctuate stochastically within each trial.

Testing the approximations

We made several approximations in the derivations above, so it is
important to check that our predictions for confidence closely match
confidence reports, when these are simulated. We simulated the diffu-
sion process using small time steps, and produced confidence reports
in accordance with the model (see (9), (10) and Fig. 2; for details of
the simulations see Supplement Section G). We then took each trial
and computed predictions for the probability of each confidence report
using the derived expressions, before randomly drawing a confidence
report in accordance with the probability assigned to it. This allowed
us to plot confidence simulated from the model, and confidence reports
that match the derived predictions.

Fig. 6 shows simulations of confidence using the model (error bars),
and confidence based on the derived predictions (error shading). No
additional approximations were made in deriving confidence predic-
tions in the interrogation condition. Consistent with this, simulated
confidence and the variance of simulated confidence closely match
predicted confidence and predicted confidence variance, as functions of
response time and unsigned average evidence over the entire-stimulus,
both with and without variability in drift-rate scaling.

For the free response derivations, we approximated evidence prior
to a decision by its average, for the purpose of estimating the drift-
rate scaling, and approximated the drift-rate scaling as independent
of the average evidence prior to a decision. These approximations
are only relevant when the drift-rate scaling is variable. Consistent
with this, simulated and predicted confidence closely match in plots
corresponding to no variability in drift-rate scaling 𝜑 (Fig. 6). When
variability in drift-rate scaling is present, we can see that the approx-
imations introduce some small discrepancies between simulations and
predictions. For example, the predictions appear to overestimate the
variability in confidence reports in trials with long response times. For
completeness, we note that there were similarly small discrepancies in
an observer who used an alternative to Bayesian confidence (Supple-
ment Section H). Nevertheless, we should always be mindful of the fact
that an approximation that works for one model or set of parameters,
may not work so well for another model or set of parameters.

4. Discussion

Using the normative frameworks of the DDM for decision making
and a Bayesian readout for confidence, we derived predictions for the
probability distribution over confidence reports, given the response,
response time, and stimulus presented on a trial. We considered both
the typical case, where response time is under the control of the
participant (free response), and the less common case in which the
observer has to respond at a particular time (interrogation). In the
free response case, where the observer must set decision thresholds
to trigger a response, we allow for the use of decision thresholds of
arbitrary shape. The results, summarised in Table 3, build on the work
of Moreno-Bote (2010) by including features that are important in the
construction of confidence. Specifically, the derivations account for
accumulation of pipeline evidence (Moran et al., 2015), the effect of
drift rate variability on pipeline evidence (Pleskac & Busemeyer, 2010),
and metacognitive noise (Maniscalco & Lau, 2012, 2016).

Importantly, the derivations cover not only static stimuli but also
stochastically fluctuating stimuli that generate normally distributed
fluctuations in evidence signal each frame. The derived expressions
only require one evaluation per trial, in contrast to previous approaches
that could handle dynamic stimuli but based on evaluation of some
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Fig. 6. Mean and variance of binned confidence, produced via simulation of the model (error bars), and through the derived predictions (shading). ‘‘Average evidence’’ here refers
to the absolute value of the following quantity: The difference in dots summed over all presented frames, divided by the duration of stimulus presentation. Details of the simulation
and plotting are provided in Supplement Section G. Predictions matched the simulation closely. There were some signs that approximations used to derive the predictions lead to
a small overestimation of variability in confidence when there is variability in drift-rate scaling (𝜑).
function at every time step prior to a decision (e.g. Chang & Cooper,
1970; Smith, 2000; Voss & Voss, 2008; Zylberberg et al., 2018). Re-
ducing computational cost is crucial for making trial-by-trial modelling
of stochastically fluctuating stimuli feasible. Trial-by-trial modelling
may provide stronger constraints when fitting models than predictions
made for large groups of trials at once (Park et al., 2016), which has
until now been the standard approach (see Section 1). Computationally
cheap predictions may also allow us to use techniques which require
predictions to be evaluated many times, such as cross-validation and
Markov chain Monte Carlo (MCMC; Bishop, 2006). A key insight behind
our derivations is that it can be much more tractable to model the
probability distribution over confidence reports than it is to derive
11
computationally cheap expressions for the decisions (and associated
response times) to which the confidence reports relate. This is because
in the build up to a confidence report, and specifically after the decision
threshold has been crossed, the evolving state of the accumulator
follows a normal distribution. In contrast, in the lead up to a decision,
the accumulation – constrained to lie at or below a decision boundary
– is inherently non-normal.

One attractive aspect of the derivations is that – should methods
be developed that facilitate efficient trial-by-trial computation of the
probability of responses and response times themselves – these can be
straightforwardly incorporated, allowing us to perform simultaneous
trial-by-trial modelling of decisions, response times, and confidence.
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Table 3
Summary of the derived expressions for confidence. In the interrogation condition
expression 𝐿 = 1 if 𝑅 = 2 and 𝐿 = −1 if 𝑅 = 1. The free response expression applies
for 𝑅 = 2, while for 𝑅 = 1 the integral limits change to −𝑑𝑖+1 and −𝑑𝑖. See Table 1 for
urther symbol definitions..
Condition Expression for confidence

Interrogation 𝑝(𝐶 = 𝑖|𝑅,𝑬) = 𝐿
𝛷(𝐿

𝜇𝑙𝑝
𝜎𝑙𝑝

)

[

𝐵𝑣𝑁
(

𝑔
√

1+ℎ2
, 𝑒𝑖+1;

−ℎ
√

1+ℎ2

)

−𝐵𝑣𝑁
(

𝑔
√

1+ℎ2
, 𝑒𝑖;

−ℎ
√

1+ℎ2

)

]

.

Where,
𝐵𝑣𝑁(𝑙1 , 𝑙2 , 𝜌) = ∫ 𝑙1

−∞ ∫ 𝑙2
−∞

1
2𝜋

√

1−𝜌2
𝑒−

1
2(1−𝜌2 )

(𝑥2+𝑦2−2𝑥𝑦𝜌)𝑑𝑥𝑑𝑦

𝑔 =
𝐿𝜇𝑙𝑝

√

𝜎2
𝑚+𝜎

2
𝑙𝑝

𝜎𝑚𝜎𝑙𝑝

ℎ = 𝐿𝜎𝑙𝑝
𝜎𝑚

𝑒𝑖 =
𝐿𝑑𝑖−𝜇𝑙𝑝
√

𝜎2
𝑚+𝜎

2
𝑙𝑝

𝜇𝑙𝑝 =
𝐸

𝜃(𝑡𝑒 )

𝜎2
𝑙𝑝 =

𝐸2𝜎2
𝜑+𝑡𝑒𝜎

2
𝑎𝑐𝑐

𝜃2 (𝑡𝑒 )

Free response 𝑝(𝐶 = 𝑖|𝑅 = 2, 𝑡𝑟 ,𝑬) = ∫ 𝑑𝑖+1
𝑑𝑖

𝑑𝑥𝑐 𝑁(𝑥𝑐 ;𝜇𝑙𝑓 , 𝜎2
𝑙𝑓 + 𝜎2

𝑚)

Where,

𝜇𝑙𝑓 = 1
𝜃(𝑡𝑒 )

(

𝑥𝑑 + 𝛥𝐸
𝜎2
𝑎𝑐𝑐+𝑥𝑑𝜎

2
𝜑𝐸

𝜎2
𝑎𝑐𝑐+𝑡𝑑𝜎2

𝜑𝐸
2

)

𝜎2
𝑙𝑓 = 𝜎2

𝑎𝑐𝑐

𝜃2 (𝑡𝑒 )

(

𝛥𝐸2𝜎2
𝜑

𝜎2
𝑎𝑐𝑐+𝑡𝑑𝜎2

𝜑𝐸
2 + 𝐼

)

For the latter, we need to know the joint probability distribution over
decisions, response times, and confidence, given the stimulus presented
on a specific trial. This joint probability can be decomposed as follows,

𝑝(𝑅, 𝑡𝑟, 𝐶|𝑬) = 𝑝(𝐶|𝑅, 𝑡𝑟,𝑬)𝑝(𝑅, 𝑡𝑅|𝑬) . (36)

We have produced computationally cheap expressions for the first term
on the right hand side of this equation. If future research produces
computationally cheap expressions for the second term, these expres-
sions can be combined through simple multiplication. We have focused
on modelling confidence to make trial-by-trial modelling using existing
methods feasible. Nevertheless, our derivations can be easily combined
with future work, should new methods be developed, permitting even
more precise and constrained model fitting, model comparison, and
parameter estimates.

For readability, we have kept the dependence of the predictions for
confidence on model parameters implicit (Section 3), but it will be by
adjusting these parameters that we can fit the model described to data
(Table 2). Additionally, by constraining parameters to certain values
we can construct model variants for model comparison. For example,
we could ask whether metacognitive noise is an important source of
variability by comparing a model in which we fit all parameters, to a
model in which the standard deviation of metacognitive noise is set to
zero. There is special flexibility with the decision threshold, because
the modeller can choose its shape and how to parameterise it. Using
these derivations we have recently compared a variety of models of
confidence, including models in which the decision threshold is flat,
and models with a decreasing decision threshold (Calder-Travis et al.,
2020).

At the outset we noted that simple expressions may also provide
additional insights into the mechanisms responsible for confidence.
For example, such expressions may elucidate exactly how we expect
different variables to interact to generate confidence, thereby help-
ing us to understand and relate the various patterns that have been
observed in confidence data. Consider a situation in which observers
report their confidence on a very fine-grained scale in a free response
task. In the simple case where the observer scales their readout so that
12
it matches the log-posterior ratio, 𝑥𝑙𝑝∕𝐾, the most likely confidence
report is (using Eq. (31)) given by the following,

1
𝐾𝜃(𝑡𝑒)

(

𝑥𝑑 + 𝛥𝐸
𝜎2𝑎𝑐𝑐 + 𝑥𝑑𝜎2𝜑𝐸

𝜎2𝑎𝑐𝑐 + 𝑡𝑑𝜎2𝜑𝐸
2

)

=
2𝑡𝑓𝛥𝜇

𝑡2𝑓𝜎
2
𝑎𝑐𝑐 + 𝑡𝑓𝜎2𝐸 + 𝑡𝑒𝛥𝜇2𝜎2𝜑

×

(

𝑥𝑑 + 𝛥𝐸
𝜎2𝑎𝑐𝑐 + 𝑥𝑑𝜎2𝜑𝐸

𝜎2𝑎𝑐𝑐 + 𝑡𝑑𝜎2𝜑𝐸
2

)

. (37)

Breaking this expression down, we see that the prefactor multiply-
ing the term in brackets features various sources of variability in
the denominator. This factor generates a highly intuitive relationship:
When variability increases (and the observer detects this increase in
variability) confidence should tend to decrease. Beyond this, the second
half of (37), in parentheses, represents a derivation and expression
of key principles of the 2DSD model of confidence introduced by
Pleskac and Busemeyer (2010). In particular, assuming no variability
in drift-rate scaling, the only evidence used for predicting confidence
is evidence from the processing pipeline. This is because if drift-rate
scaling variability, 𝜎𝜑, is zero, the second term within the parentheses,

𝛥𝐸
𝜎2𝑎𝑐𝑐 + 𝑥𝑑𝜎2𝜑𝐸

𝜎2𝑎𝑐𝑐 + 𝑡𝑑𝜎2𝜑𝐸
2
, (38)

simply reduces to 𝛥𝐸. It seems counterintuitive that the evidence on
which the decision was based adds nothing to our prediction for confi-
dence. This occurs because, at the time of the decision, we know that
the state of the accumulator is at the decision boundary corresponding
to the response made (Fig. 2; Pleskac & Busemeyer, 2010; Yu et al.,
2015). Given knowledge of the state of the accumulator at the time of
the decision, we do not need to know the evidence presented up to this
point.

Drift rate variability adds nuance to this relationship, via the frac-
tion multiplying 𝛥𝐸 in (38). This term provides a mathematical descrip-
tion of the fact that, if strong evidence has been gathered by the time
of the decision, relative to the time spent deliberating, the drift-rate
scaling is likely to be high (Moreno-Bote, 2010), and pipeline evidence
will have a big impact on decision confidence (Pleskac & Busemeyer,
2010). On the other hand, if at the time of decision, little evidence
has been gathered relative to the time spent deliberating, evidence is
accumulating slowly, suggesting a low drift-rate scaling. In turn, this
suggests that pipeline evidence will be processed poorly and will have
a small effect on confidence. This is why the fraction contains decision
time in the denominator, reducing the effect of pipeline evidence,
and the height of the threshold at decision time is in the numerator,
increasing the effect of pipeline evidence. We are not the first to
describe this effect of drift rate variability; it was a central idea in the
model for confidence proposed by Pleskac and Busemeyer (2010). Our
contribution is to derive an expression for this effect. Moreover, the
expression in (37) goes beyond the 2DSD model to include effects of
time on confidence stemming from the Bayesian confidence readout
used (Moran, 2015; Moreno-Bote, 2010), that are present even in
the absence of continued evidence accumulation following a decision,
i.e., when 𝛥𝐸 is zero. Even in this case, the total time spent processing
the stimulus, 𝑡𝑒, still appears in the denominator of the prefactor in
(37), and will therefore reduce confidence, consistent with previous
findings (Kiani et al., 2014; Murdock & Dufty, 1972).

Beyond formalising our ideas about the relationship between con-
fidence and other variables, a further insight from our expressions
for confidence is the integration of empirical findings that previously
appeared difficult to explain. In particular, there are inconsistent find-
ings regarding the relationship between confidence and signal strength
on error trials. Sanders et al. (2016) found confidence on error trials
decreased as signal strength increased, which has been taken as a
distinguishing feature of confidence in some studies (Kepecs & Mainen,

2012). However, Hellmann et al. (2023) and Kiani et al. (2014) found
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that confidence on error trials increased with signal strength. In these
studies, participants simultaneously reported their decisions and con-
fidence, and Kiani et al. (2014) suggested that this design choice may
have been key to the pattern they observed (see also Desender et al.,
2020; Khalvati et al., 2020).

Our derivations support this suggestion. To see why, we look again
at our expression for most likely confidence, (37), but now consider
the situation in which 𝛥𝐸 = 0 (as would be the case if choice and
confidence are reported simultaneously). We have,

2𝑡𝑓𝛥𝜇

𝑡2𝑓𝜎
2
𝑎𝑐𝑐 + 𝑡𝑓𝜎2𝐸 + 𝑡𝑒𝛥𝜇2𝜎2𝜑

𝑥𝑑 . (39)

In the case of a flat decision threshold (and, hence, constant 𝑥𝑑),
the only variable that changes between trials is 𝑡𝑒, the duration of
evidence presentation, which is the same as response time in the free
response task. Noting that this term appears in the denominator of the
expression, that greater signal strength will lead to faster responses,
and that at each level of signal strength the response times for correct
and error trials will on average be identical (in the absence of drift-rate
variability; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Shadlen
et al., 2006), we therefore predict that the most likely confidence report
will also be higher on both correct and error trials, due to the lower 𝑡𝑒,

hen signal strength is greater. (The pattern of response times in Exper-
ment 1 of Hellmann et al., 2023 is not consistent with this account, but
e note that all models struggled to account for the change in response

imes with signal strength in this experiment, and speculate that it may
e important to take into account perceptual integration when stimulus
asking is used.) A different prediction follows when the observer has

ime to process pipeline evidence. The processing pipeline contains a
onsiderable amount of information from the stimulus (approximately
00 ms of the stimulus prior to response; Ratcliff & McKoon, 2008;
esulaj et al., 2009). On error trials, this evidence will tend to favour

he alternative (correct) option, decreasing confidence, and this effect
ill be stronger when signal strength is high. The implication is that

onfidence will decrease as signal strength increases.
To test the intuitions gained from studying the equations, we sim-

lated response times, decisions, and confidence reports under two
ifferent free response conditions. In one condition, we simulated the
ask designed by Kiani et al. (2014), setting pipeline evidence to zero.
n the other condition, we simulated a processing pipeline containing (a
onservative) 100 ms of the stimulus prior to response (see Supplement
ection G for details of the simulations). Confidence in errors increased
ith signal strength when decisions and confidence reports were simul-

aneous, whereas confidence in errors decreased with signal strength
hen observers received pipeline evidence (Fig. 7).

In this way, the expressions we derive can provide new insights
s well as formalise key intuitions about confidence in tractable ex-
ressions for use in future modelling efforts. We should, however,
ote some important limitations to our approach. First, regarding the
cope of the derivations, we have been concerned only with the DDM
ramework and with a specific class of stimuli. We focus on the DDM
s a particularly interesting case due to the normative properties of
he diffusion mechanism (see Section 1). Nevertheless, a family of
lternatives to the DDM have been studied that assume not just one
ccumulator, but two (Bogacz et al., 2006; Moreno-Bote, 2010), which
ay be more or less anti-correlated with each other. It may be possible

o use recently derived expressions for the state of the second accumu-
ator at decision time, to extend the approach developed here (Shan
t al., 2019), but we leave this for future research.

Likewise, we leave for future research whether it is possible to
xtend the derivations to more general dynamic stimuli, rather than just
hose with normally distributed evidence fluctuations and for which
he effects of perceptual integration can plausibly be ignored (see
ection 2). In principle, any stimulus for which we can find the optimal
bserver’s decision and confidence rules could be modelled using the
13

pproach we have described. One of the most common stimuli, the t
Fig. 7. Confidence on free response trials that led to errors, as a function of signal
strength. When confidence is reported immediately, and therefore does not reflect
evidence measurements in the processing pipeline, confidence on error trials increases
with signal strength (𝑡(39) = 7.1, 𝑝 = 1.4 × 10−8). On the other hand, when confidence
eports are made after a decision, and include 100 ms of evidence measurements
rom the processing pipeline, confidence on error trials decreases with signal strength
𝑡(39) = −17, 𝑝 = 7.7 × 10−20). Variability in signal strength was generated by using

non-zero value for drift-rate variability. To perform the statistical tests, for each
articipant and condition, we calculated the correlation coefficient between the signal
trength and binned confidence on error trials. We then compared the correlation
oefficients to zero across participants. Simulation and plotting details in Supplement
ection G.

andom dot motion stimulus, contains dots that move randomly over
he course of a trial, creating random fluctuations in evidence for the
revailing motion direction (Kiani et al., 2008; Pilly & Seitz, 2009).
f it was possible to characterise the nature of these fluctuations, and
erive the optimal observer’s decision and confidence rule, a very
arge quantity of data could be analysed on a trial-by-trial basis using
he approach set out here. A specific challenge that would need to
e overcome in the case of the random dot motion task would be
aking into account the effects of perceptual integration, which are
ikely substantial for this task (Smith & Lilburn, 2020; Watamaniuk

Sekuler, 1992). Perceptual integration will complicate the optimal
bserver’s computation for confidence, because evidence received at
ifferent time points will no longer be (conditionally) independent
given the standardised drift-rate). A Bayesian observer will take into
ccount these additional, short-term correlations, and future theoretical
ork will be needed to determine the Bayesian confidence computation
nder such conditions.

A further direction in which the derivations could be generalised to
pply to more stimuli would be to consider a greater range of priors
ver mean evidence strength (given by 𝜇, see Eq. (2)). The derivations
lready cover stimulus frame-to-frame stochastic fluctuations around
he mean evidence strength, and trial-to-trial variability in how well the
timulus evidence is processed (given by the drift-rate scaling, 𝜑). This
reates a situation in which observers are aiming to infer from which
f two overlapping normal distributions the average rate of evidence
ccumulation is drawn (see Eqs. (6) and (7)). Distinguishing between
wo classes of stimuli, whose features possibly overlap (e.g., Adler &
a, 2018), is a common task for animals and humans (e.g., determining
hether a distant shape is a predator or not). A different situation that
as also been considered is the task of determining whether the average
ate of evidence accumulation is positive or negative (e.g., Moreno-
ote, 2010), corresponding to the different task of directly comparing
stimulus feature to a reference value (e.g., determining whether

n animal is running faster or slower than a specific speed). The
pproach presented here could also be adapted to this other form of
ask. The main change would be in terms of how the observer converts

he accumulated evidence into an estimate of confidence: The precise
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form of the normative transformation will be different, reflecting the
different goal of the observer (Moreno-Bote, 2010).

A related limitation is that we have only considered a specific kind
of confidence report – a Bayesian readout of the probability of being
correct – and have assumed that the observer holds approximately true
beliefs about the generative process responsible for their evidence mea-
surements. It is important to note that observers can behave as if they
hold a true generative model, and match the behaviour of a Bayesian
observer, simply by learning through association the mapping from
accumulator state and time to probability correct (Kiani & Shadlen,
2009; Ma & Jazayeri, 2014). Therefore, human confidence reports may
be well described by the equations derived above, even if humans are
not actually performing Bayesian computations, if feedback is provided
and participants have sufficient time to learn to report their confidence
appropriately. In addition, the derived equations could be adapted to
cover cases where the generative model held by the observer does not
perfectly match the true generative model (as in Calder-Travis et al.,
2020 for example). It will be through empirical investigation that we
determine if and when confidence reports are Bayesian. In providing
new computationally cheap expressions for Bayesian confidence, we
hope to support empirical work that aims to understand the compli-
cated and mixed pattern of results relevant to this topic (e.g. Adler &
Ma, 2018; Caziot & Mamassian, 2021; Desender et al., 2020; Geurts
et al., 2022; Khalvati et al., 2020; Kvam & Pleskac, 2016; Li & Ma,
2020; Meyniel et al., 2015; Peters et al., 2017; Sanders et al., 2016).

A second set of limitations concern the applicability of our deriva-
tions to modelling. In particular, we only make predictions for con-
fidence, not for response times and decisions, and we have not yet
accounted for lapses. As detailed above, our choice to derive expres-
sions for confidence alone was a deliberate one, made in order to
avoid the difficulties in deriving computationally cheap expressions
for responses and response times (see Section 1). Additionally, when
fitting confidence reports, we will still model the decision mechanism,
in the sense that we will generate estimates for the parameters of this
mechanism. Using these parameters we will be able to make predictions
for decisions and response times. This will allow us to examine whether
a model that fits well to confidence nevertheless generates implausible
response and response time data, and will provide an additional check
of the model and its assumptions. Regarding lapses, it would be tricky
to directly model lapses that affect the response produced (Adler & Ma,
2018; Ratcliff & Tuerlinckx, 2002), because we do not have expressions
for the probability distribution over decisions and response times gen-
erated by the non-lapse diffusion process. (For similar reasons, it would
be difficult to incorporate the idea of variability in the start point of the
accumulator, and variability in the duration of the pipeline (Ratcliff
& McKoon, 2008; Ratcliff & Tuerlinckx, 2002).) However, it would be
straightforward to include a lapse rate parameter that describes some
probability that a random confidence report is given.

Notwithstanding the limitations discussed, we believe these deriva-
tions will prove useful for the two purposes described at the outset:
Supporting deeper insight into the confidence of an important class of
observers, and supporting trial-by-trial modelling. We have seen in this
discussion that the derived expressions offer the potential to directly
explore and understand the relationship between confidence and other
variables. This level of explanatory power may be difficult to gain even
after running simulations using a wide range of parameter values. The
expressions found only require evaluating once per trial, making trial-
by-trial modelling of stochastically fluctuating stimuli more feasible.
As a consequence, we hope these results will support efforts to develop
models which make ever more precise and sophisticated predictions for
behaviour.
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