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Abnormal oscillatory synchrony is increasingly acknowledged as a
pathophysiological hallmark of Parkinson’s disease, but what pro-
motes such activity remains unclear. We used novel, nonlinear time
series analyses and information theory to capture the effects of
dopamine depletion on directed information flow within and between
the subthalamic nucleus (STN) and external globus pallidus (GPe).
We compared neuronal activity recorded simultaneously from these
nuclei in 6-hydroxydopamine-lesioned Parkinsonian rats with that in
dopamine-intact control rats. After lesioning, both nuclei displayed
pronounced augmentations of beta-frequency (�20 Hz) oscillations
and, critically, information transfer between STN and GPe neurons
was increased. Furthermore, temporal profiles of the directed infor-
mation transfer agreed with the neurochemistry of these nuclei, being
“excitatory” from STN to GPe and “inhibitory” from GPe to STN.
Separation of the GPe population in lesioned animals into “type-
inactive” (GP-TI) and “type-active” (GP-TA) neurons, according to
definitive firing preferences, revealed distinct temporal profiles of
interaction with STN and each other. The profile of GP-TI neurons
suggested their output is of greater causal significance than that of
GP-TA neurons for the reduced activity that periodically punctuates
the spiking of STN neurons during beta oscillations. Moreover, STN
was identified as a key candidate driver for recruiting ensembles of
GP-TI neurons but not GP-TA neurons. Short-latency interactions
between GP-TI and GP-TA neurons suggested mutual inhibition,
which could rhythmically dampen activity and promote anti-phase
firing across the two subpopulations. Results thus indicate that infor-
mation flow around the STN-GPe circuit is exaggerated in Parkinson-
ism and further define the temporal interactions underpinning this.
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IT IS UNCLEAR HOW LOSS of midbrain dopamine neurons in
Parkinson’s disease (PD) disturbs the activities of their targets
in corticobasal ganglia circuits, which must ultimately support
the observed behavioral deficits. Studies in unmedicated pa-
tients with PD have shown that beta oscillations (13–30 Hz)
often prevail in the cortex and basal ganglia (Alonso-Frech et
al. 2006; Amirnovin et al. 2004; Brown 2003; Brown et al.
2001; Levy et al. 2002; Moran et al. 2008; Williams et al.
2002). These beta oscillations decrease when patients are on
dopamine replacement medication or when they initiate move-

ments, hinting at their functional significance (Amirnovin et al.
2004; Brown et al. 2001; Brown and Williams 2005; Kuhn et
al. 2004; Levy et al. 2002; Williams et al. 2002, 2003, 2005).
Excessively synchronized beta oscillations also arise in these
circuits after chronic dopamine depletion in the 6-hydroxydo-
pamine-lesioned rat model of PD (Degos et al. 2009; Mallet et
al. 2008a, 2008b; Sharott et al. 2005b). Whether these oscilla-
tions have a direct negative effect on neural representations and
the information coding capacity of these circuits (Cruz et al.
2009) or only indirectly reflect changes in the underlying
computations therein is not clear, and neither are the precise
changes in microcircuit properties that support them. It is
known, however, that excessive beta oscillations in this animal
model develop over a period of days/weeks following lesions
of dopamine neurons (Degos et al. 2009; Mallet et al. 2008b)
and that they arise in key circuit nodes, such as the subthalamic
nucleus (STN) and external globus pallidus (GPe).

The reciprocally connected network formed by the glutama-
tergic neurons of the STN and the GABAergic neurons of GPe
might be particularly important for generating synchronized
oscillations in the basal ganglia in PD (Bevan et al. 2002).
Indeed, the incidence of oscillatory synchronization between
the STN and GPe, as measured by standard (linear) cross-
correlations between neuron pairs, greatly increases after do-
pamine depletion in animals (Mallet et al. 2008b). However,
changes in cross-correlations do not necessarily reflect changes
in the interactions between these two nuclei. For example, if
the autocorrelations (including those arising from oscillatory
activity) in the GPe changed, the measured cross-correlation
would also change, even when the influence of the GPe on the
STN had not. This is because the cross-correlation is the
convolution of the autocorrelation function and the transfer
function of the system (Papoulis 1991). Stated another way,
linear cross-correlations reflect both the changes within each
nucleus and the interaction between the nuclei. Therefore,
cross-correlations do not necessarily best represent the effect of
a spike in one nucleus on the probability of a spike in the other
nucleus, which is the quantity of interest. Analytical models
that are based on logistic regression (Truccolo et al. 2005) and
mutual information (Cruz et al. 2009) offer some advantages in
that they can account for the effects of the changes within each
nucleus when they assess the interactions between nuclei,
although they do not unambiguously distinguish between direct
(monosynaptic) effects and indirect network effects. We have
applied these modeling approaches to examine how the inter-
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actions or “directed information flow” within the STN-GPe
network are changed following chronic dopamine depletion.

METHODS

Data collection. Experimental procedures were carried out on
adult, male Sprague-Dawley rats (Charles River, Margate, UK) and
were conducted in accordance with licenses granted by the UK Home
Office under the Animals (Scientific Procedures) Act 1986 (UK). The
electrophysiological data set on which this study was based has been
published previously (Mallet et al. 2008a). Therefore, we will only
briefly describe the recording methods in this report.

Electrophysiological recordings were made in 10 dopamine-intact
control rats and 18 parkinsonian rats [6-hydroxydopamine (6-OHDA)
lesioned]. Anesthesia was induced with 4% (vol/vol) isoflurane (Iso-
flo; Schering-Plough, Welwyn Garden City, UK) in O2 and main-
tained with urethane (1.3 g/kg ip, ethyl carbamate; Sigma, Poole, UK)
and supplemental doses of ketamine (30 mg/kg ip, Ketaset; Willows
Francis, Crawley, UK) and xylazine (3 mg/kg ip, Rompun; Bayer,
Leverkusen, Germany). Simultaneous extracellular recordings of the
spikes fired by ensembles of single neurons in the STN and GPe were
most often made using multicontact “silicon probes” (NeuroNexus
Technologies, Ann Arbor, MI), where the distance between con-
tacts was 100 �m. Some recordings of STN units were made using
glass electrodes instead of silicon probes, according to standard
methods (Mallet et al. 2008b). Unit activity in the nuclei was
recorded during episodes of spontaneous “cortical activation,”
which contain patterns of activity that are similar to those observed
during the awake, behaving state (Steriade 2000). Cortical activa-
tion was defined according to electrocorticograms recorded simul-
taneously with unit activity (Mallet et al. 2008a). In 6-OHDA-
lesioned animals, exaggerated beta oscillations emerge in cortico-
basal ganglia circuits during activated brain states (Mallet et al.
2008a, 2008b), thus accurately mimicking the oscillatory activity
recorded in awake, unmedicated PD patients (Brown et al. 2001).

6-OHDA lesions of dopamine neurons. Unilateral 6-OHDA lesions
were carried out as described previously (Mallet et al. 2008a, 2008b).
Twenty-five minutes before the injection of 6-OHDA, all animals
received a bolus of desipramine (25 mg/kg ip; Sigma) to minimize the
uptake of 6-OHDA by noradrenergic neurons (Schwarting and Huston
1996a). Anesthesia was induced and maintained with isoflurane (as
described above). The neurotoxin 6-OHDA (hydrochloride salt;
Sigma) was dissolved immediately before use in ice-cold 0.9% (wt/
vol) NaCl solution containing 0.02% (wt/vol) ascorbate to a final
concentration of 4 mg/ml. Next, 3 �l of 6-OHDA solution were
injected adjacent to the medial substantia nigra (4.5 mm posterior and
1.2 mm lateral of bregma, and 7.9 mm ventral to the dura; Paxinos and
Watson 1986). The extent of the dopamine lesion was assessed 14 or
15 days after 6-OHDA injection by challenge with apomorphine (0.05
mg/kg sc; Sigma; Schwarting and Huston 1996b). The lesion was
considered successful in those animals that made �80 net contraver-
sive rotations in 20 min. Note that the emergence of exaggerated beta
oscillations after 6-OHDA lesions is not dependent on apomorphine
(Sharott et al. 2005b). Electrophysiological recordings were carried
out ipsilateral to 6-OHDA lesions in anesthetized rats 21–45 days
after surgery, when pathophysiological changes in the basal ganglia
are likely to have leveled out near their maxima (Vila et al. 2000).

Model. We previously developed an analytical approach based on
log-linear models (Cruz et al. 2009; Truccolo et al. 2005) that allows
us to characterize the impact of various features of neural activity on
network entropy, a measure of the upper bound of information coding
capacity of a given neural population. This modeling approach can be
readily extended to describe the mutual information between pairs of
neurons in two distinct populations, e.g., STN and GPe. Mutual
information in this case affords an estimate of how well the “re-
sponse” (i.e., spiking activity) of a neuron in one nucleus can be
predicted from the response of a neuron in another nucleus. In effect

then, it can give insights into what information can potentially be
transferred between the two nuclei. Our modeling approach is an
example of nonlinear time series analysis (Kantz and Schreiber 2004),
and we do it within the framework of Granger causality (Bollimunta
et al. 2009). More specifically, when we estimated the interactions
between STN and GPe neurons (or between different types of GPe
neuron), we used only (Granger) causal activity, which is to say that
we considered only those effects with non-negative time delays
between nuclei. Moreover, when we examined the mutual information
between nuclei, we measured the amount of additional information
about the activity of neuron i at the current time point that can be
obtained from neuron j recorded in the other nucleus, but only after
first accounting for all of the information that can be extracted from
the past activity of neuron i itself. For example, if neuron i were an
intrinsic oscillator, its activity could be accurately predicted from its
own firing history, and thus the activity of other neurons (j, etc.)
would not be additionally useful. Thus, if we first modeled the effects
of neuron i on itself, and then checked how much better we could do
by including neuron j in the model, we would not find an improve-
ment. However, it should be noted that the model affords a conser-
vative estimate of the effects of neuron j on neuron i. It is conservative
because the prior history of neuron i may have been affected by the
history of neuron j, and yet this will also be taken out. But why should
there be any interaction remaining between neuron j and neuron i after
the past activities of both neurons are taken into account? In a
perfectly regular system of coupled oscillators, removing the effects
of the autocorrelation of each oscillator would entirely suppress their
cross-correlation. However, if the oscillations present in two spike
trains are not perfectly regular, the presence of “phase slips” over time
will mean that some cross-correlation features survive after the auto-
correlations have been accounted for. Previous studies have confirmed
the presence of numerous phase slips in the oscillations within spike
trains of basal ganglia neurons (Hurtado et al. 2004, 2005; Park et al.
2010). Hence, the firing history of either neuron may not fully predict
their interactions, and this is likely the case for the networks of STN
and GPe neurons considered in the study (see below). In short then,
with our conservative approach, any effects of neuron j on i do not
include past influences. Nevertheless, the fact that many of the
constituent neurons of the STN-GPe network are intrinsic pacemakers
(Surmeier et al. 2005) makes this conservative approach important
because it discounts the past history of a neuron. Our analytical
approach thus has advantages over computing standard linear cross-
correlations (also see Introduction). However, this approach does
make assumptions, despite the fact that it has often been called
“direct” or “model free” (Strong et al. 1998). More specifically, the
temporal resolution of the spiking activity (or the bin width for
analyses) must be preselected, and the level of interaction between
spikes at different times must also be selected. The validity of both
selections can be tested, to some extent (see below).

All analyses were carried out in MATLAB (The MathWorks,
Natick, MA). An analysis flow chart is presented in Fig. 1. Model
fitting began with binning the spike time data (point process) at 5 ms,
where a bin received a value of 1 if there were one or more spikes in
it or 0 if there were no spikes in it. At this bin size, �0.01% of the bins
from STN and GPe neurons had two spikes in them. Thus pairs of
spikes in a single bin were very rare. Furthermore, this bin size
preserves temporal structure up to the 100-Hz Nyquist frequency, and
therefore it preserves much of the relevant temporal structure of the
spike trains recorded in the STN and GPe. To assess the validity of
this temporal resolution, we carried out pilot analyses using smaller
bin sizes and found that results were consistent with those reported in
this study using the 5-ms bin size. We also assessed whether including
higher order interactions between spikes at different times improved
the model, as we did in our previous study (Cruz et al. 2009). We
found that these higher order interactions did not enhance the model
fits. To some extent, however, finding effects of higher order inter-
actions is limited by the amount of data available for fitting the model,
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so one can never be sure that effects would not be found if more data
were available.

After binning of the spike trains, we fit the following model to pairs
of spike trains (e.g., 1 from STN, 1 from GPe):

P�si,t�si,1:t�1, sj,1:t� � g�a0 � �
k�1

K

aksi,t�k � �
l�0

L

blsj,t�l� . (1)

The left hand side, P(si,t| . . .) is the probability of a spike (s) fired by
neuron i in time bin t conditioned on the other variables under
consideration, which depend on the model used (see below). The
variable i represents the neuron whose response is being predicted, j
represents another neuron (e.g., from the other nucleus), t indicates the
current time bin, K indicates the number of lagged time bins from
neuron i that are being used (as an “auto predictor”), and L indicates
the number of lagged time bins from neuron j that are being used to
predict the activity of neuron i (a “cross predictor”). The terms ak are
referred to as auto terms, because they model nonlinear autocorrela-
tions, and the terms bl are referred to as cross terms, because they
model nonlinear cross-correlations. The latter are the parameters
plotted in Figs. 5 and 7. The values of K and L were optimized
individually for each neuron pair using the model selection procedure
described below. The sum over l terms starts at 0, which is to say that
we used synchronous spikes for prediction. We have carried out all
analyses with and without this term, and the results are equivalent.
However, we chose to include this term because the propagation time
of activity between the STN and GPe can be �5 ms (i.e., bin size used
in this study) in the adult rat in vivo (Kita et al. 1983; Kita and Kitai
1991). The function g captures the nonlinearity that constrains the
prediction of a spike in each bin to be between 0 and 1, i.e., it
constrains it to be a probability. It is given by the following logistic
function:

g��� �
1

1 � e�� . (2)

The logistic transform makes Eq. 1 nonlinear. However, it is a
static nonlinearity, as opposed to a dynamic nonlinearity that would be
a function of time or time lags. Because Eq. 1 is nonlinear, it differs
from the linear interactions that are captured by cross-correlations,
coherence, and other standard time- and frequency-domain analyses.

Parameter estimation. The parameters of the model were fit by
maximizing the likelihood of correctly predicting whether a spike did
or did not occur in each bin. Thus the model attempts to have
P(si,t| . . .) be as close to 1 as possible every time a spike occurs and as
close to 0 as possible when there is no spike. This is done by
maximizing the log-likelihood (ll) function, given by

ll � �
t�1

T

si,tlog p�si,t��, �sm��
� �1 � si,t�log�1 � p�si,t��, �sm��	 ,

(3)

where � is the parameter vector for the current model.
The nonlinear model from Eq. 1 was fit with subsets of parameters

set to 0, to partial out different effects. Specifically, the “auto” model
included only the lagged time bins from one neuron in a given cell
pair (i.e., the ak terms) and estimated the effect of autocorrelations,
that is, oscillations at the single-cell level, on the mutual information.
The “full” model, on the other hand, included all terms, i.e., both the
ak and bl terms. Thus, for the auto models, � � {a0, a1, . . . , ak}, and
for the full models and pairs of neurons, � � {a0, a1, . . ., ak, b0, . . . ,
bL}. We use sm as shorthand to indicate the set of lagged parameters
appropriate to the corresponding model such that, for example, for the
auto model, sm � {si,t�1, . . . , si,t�K}.

5

Fig. 1. Analysis flow chart. A: data binning and conversion to a binary signal. B: selection of optimal number of lags using the Bayesian information criterion
(BIC). C: mutual information estimation. D: analysis of the temporal profile of interactions between nuclei. STN, subthalamic nucleus; GPe, external globus
pallidus.
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We maximized this function using an online version of the itera-
tively reweighted least-squares algorithm. The parameter updates at
iteration n for this algorithm are given by

�n�1 � �n � �sm�si,t � p�si,t��n, �sm��	 . (4)

In this case, sm is the vector of spikes being used for prediction at the
corresponding time step for the model, containing either auto or cross
terms. We fit this model using the early stopping rule. To do this, the
data set was split in half and Eq. 4 was iterated on half of the data and
the log-likelihood (Eq. 3) was estimated on the other half of the data.
Iteration was stopped when the change in the log-likelihood was
below a criterion value given by


 ll�n�1� � ll�n�

ll�n�1� 
 	 10�5. (5)

Usually, the early stopping rule is used to control for overfitting, and
in this case one looks for minima of the log-likelihood. However,
because we had far more data than parameters in our model, the
log-likelihood reached a plateau, and we used a small change in this
plateau as our estimate of convergence.

Model selection. The number of lagged time bins, variables K and
L, for the nonlinear auto and cross components of the models,
respectively, had to be estimated. To do this, we estimated models
with 1–30 lagged time bins (i.e., K � 1, K � 2, . . . , K � 30) and used
model selection techniques to determine the optimal number of lags
(see Fig. 3). We found that our entropy estimates (see below) were not
strongly dependent on the number of lags used, as long as we used
enough lags. The number of relevant lags is an interesting quantity by
itself, because it provides information about the time scale of the
correlations in the data. Thus, if correlations extend over a longer
period of time, more lags will be necessary to capture them. On the
other hand, if the significant number of lags is zero, then there are no
significant interactions. To estimate the optimal number of lags, we
used the Bayesian information criterion (BIC). This is given by

BIC�v� � 2ll � v ln�T� (6)

where v is the number of parameters in the model, ll is the log-
likelihood, and T is the amount of data available for estimating the
model. The optimal number of lags was determined by maximizing
the BIC function. We also examined entropy estimates using Akaike’s
information criterion (AIC) (Tong 1990). Although the number of
lagged terms was always larger, because AIC penalizes with �2v
instead of �vln(T) and T was large in our data, the actual entropy
estimates were statistically indistinguishable.

Mutual information. After the models were optimized for each pair
of STN/GPe neurons (or GPe/GPe neurons), we used them to estimate
the causal mutual information (the directed information flow) between
the same pairs. This mutual information, Icausal, is given by

Icausal � H�s�a0, a1, . . . , aK�
� H�s�a0, a1, . . . , aK, b0, b1, . . . , bL� ,

(7)

where H(x) is the entropy of the spike train under the corresponding
model calculated with the standard equation (Cover and Thomas
1991)

H�si��, {sm}�
� �

1

T�
t�1

T

�
s�0

1

p�si,t��, �sm�)log2 p�si,t��, �sm�� .
(8)

Damped sinusoids. The temporal structures of interactions (lagged
parameters for bl) between STN and GPe, and within GPe itself, were
found to resemble damped beta-frequency profiles (see Fig. 5). To
characterize this more specifically, we fit damped sinusoids to the
average interaction terms. They were fit by minimizing the squared
error between the measured parameters and the damped sinusoid,
which was given by

r�t� � 
e�t⁄�cos�2�ft � �� . (9)

The parameter 
 is the maximum amplitude, � is the damping rate
(in seconds), and � is the phase of the cosine function (in radians). We
report these parameters and the frequency characteristics (f) in the
RESULTS. Minimization was done using fminsearch in MATLAB.

RESULTS

Comparison of STN-GPe network dynamics in control rats
and parkinsonian rats. Extracellular unit activity was recorded
simultaneously from neurons in the STN and GPe in dop-
amine-intact control rats and 6-OHDA-lesioned parkinsonian
rats. The data set was composed of 49 pairs of STN/GPe
neurons in control animals (10 single neurons in the STN and
49 in the GPe) and 184 pairs of STN/GPe neurons in lesioned
animals (26 single neurons in the STN and 133 in the GPe).
The GPe neurons analyzed in this study comprise a subset of
the GPe neurons considered in our previous study (Cruz et al.
2009), since in this study we only included those GPe neurons
that were simultaneously recorded with at least one STN neuron.
In a first set of analyses, we considered all GPe neurons in control
animals as a single population and all GPe neurons in lesioned
animals as another single population. In a second set of analyses,
we split the single GPe population recorded in lesioned animals
and grouped the neurons according to previously identified cell
types (Mallet et al. 2008a). Specifically, two main types of GPe
neuron can be identified in lesioned animals using their distinct
firing patterns (Mallet et al. 2008a). Type-A GPe neurons (GP-TA
neurons, n � 26 STN/GP-TA cell pairs) preferentially discharge
during the “active components” of cortical slow (�1 Hz) oscil-
lations, whereas type-I GPe neurons (GP-TI neurons, n � 105
STN/GP-TI cell pairs) preferentially discharge during “inactive
components.” This functional dichotomy is preserved, that is,
GP-TA and GP-TI neurons tend to still fire in “anti-phase,”
during the excessive beta oscillations that arise in lesioned
animals during activated cortical states (Mallet et al. 2008a), as
were studied presently. Given this functional dichotomy in
GPe during excessive beta oscillations, it was important to
examine whether GP-TA and GP-TI neurons interact differ-
ently with STN neurons, among themselves, or with each
other. As reported previously (Mallet et al. 2008a), most GPe
cells could be considered as GP-TA or GP-TI neurons, but for
these secondary analyses, 58 pairs of STN/GPe neurons were
not included because the GPe cell could not be unambiguously
identified as either type. Also, we did not similarly split the
population of GPe neurons recorded in control rats, because
when dopamine is intact, most of these cells fire independently
of the cortical slow oscillation (Mallet et al. 2008a).

Mean firing rates of STN neurons recorded during activated
brain states in control and lesioned animals were 13.5 and 30.9
Hz, respectively, whereas the mean firing rates of the whole
populations of GPe neurons were 32.0 and 17.4 Hz, respectively
(Fig. 2A). Thus chronic loss of dopamine is associated with a
significant increase of STN activity (t-test, P � 0.001) and a
decrease in GPe firing (t-test, P � 0.001). When GPe neurons
recorded in lesioned animals were grouped according to cell type,
the mean firing rates of GP-TI neurons and GP-TA neurons were
14.5 and 19.7 Hz, respectively (Fig. 2E, t-test, P � 0.001).
Dopamine depletion also led to increased prevalence of �20 Hz
(beta frequency) oscillations in the spike trains of single neurons
in the GPe (Fig. 2B) and STN (Fig. 2C), as well as the emergence

2015INTERACTIONS BETWEEN THE STN AND GPe

J Neurophysiol • VOL 106 • OCTOBER 2011 • www.jn.org

http://jn.physiology.org/


of a well-defined peak at beta frequencies in the average cross-
spectra between STN and GPe (Fig. 2D). The mean autospectra of
GP-TI neurons but not that of GP-TA neurons showed clear beta
oscillations (Fig. 2F). Furthermore, beta peaks were seen in the
cross-spectra between different cell types in GPe (Fig. 2G), as
well as between STN and GP-TI neurons and between STN and
GP-TA neurons (Fig. 2H).

Parameter estimation for nonlinear models of spiking activ-
ity in STN-GPe network. The primary goal of this study was to
compare directed information flow or transfer between the

STN and GPe in control and parkinsonian animals. To this end,
we fitted two models to the response of each STN or GPe
neuron that had been recorded simultaneously with a neuron in
the other nucleus. First, we fitted a model (auto) that had only
autocorrelation terms. This allowed us to examine how well the
response of an individual neuron could be estimated from its
own spiking history. This model was fit by optimizing (adding)
lagged time bins until no additional information could be
extracted from the response history to predict activity in the
current time bin. Lags of zero indicate no significant interac-

Fig. 2. Comparison of GPe, type-inactive (GP-TI) and type-active GPe (GP-TA), and STN network dynamics and interactions in dopamine-intact control rats
and 6-hydroxydopamine (6-OHDA)-lesioned parkinsonian rats. A: mean firing rates of all STN and GPe neurons in control and lesioned animals. B: mean
autospectra for all GPe neurons in control and lesioned animals. C: mean autospectra for STN neurons in control and lesioned animals. D: mean cross-spectra
between pairs of GPe and STN neurons. E: mean firing rates of GP-TI neurons and GP-TA neurons in lesioned rats. F: mean autospectra for GP-TI and GP-TA
neurons in lesioned rats. G: mean cross-spectra between GP-TI pairs, between GP-TA pairs, and between GP-TI/GP-TA pairs of neurons in lesioned rats.
H: mean cross-spectra between STN/GP-TI pairs and between STN/GP-TA pairs of neurons in lesioned rats. Asterisks in A and E indicate significant
differences. a.u., arbitrary units.
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tions. If correlations extend over a longer period of time, more
lagged time bins are necessary to capture them. Therefore, the
optimal number of lagged time bins that provide information
about the current activity of a neuron is an estimate of the
dependence of current activity on past activity, or the correla-
tion length of the spike train. We found that for most STN
neurons, in either control or lesioned animals, the number of
significant lagged bins was between 5 and 20 (Fig. 3A). Since
each bin was 5 ms, this meant that the previous 25- to 100-ms
history of a STN neuron’s activity contained information about
whether the same neuron would fire a spike in the current bin.
However, the distributions of lagged bins differed significantly
for STN neurons in control and lesioned animals [Kolmogorov-
Smirnov (KS) test, P � 0.001]. Indeed, STN neurons in
controls had fewer significant interactions than those in le-
sioned animals, as indicated by a larger proportion of lagged
bins at zero, and thus fewer lags above zero (Fig. 3A). The
spiking of GPe neurons could be accounted for by 5–12 lagged
bins in both control and lesioned animals (Fig. 3B). These
distributions of lagged bins did not differ between control and
lesioned rats (KS-test, P � 0.759). When the single GPe
population data from lesioned animals were split into GP-TI
and GP-TA neurons (Fig. 3C), it could be seen that the number
of lagged time bins was similar between these two groups
(KS-test, P � 0.184).

After the estimation of the auto model, we estimated the
cross model, which included the cross terms, to account for
interactions between STN and GPe or interactions between
pairs of neurons within GPe. The first step, similar to the
procedure with the auto model, was to estimate the number of

significant lagged time bins. In all cases, fewer terms were
necessary to account for interactions between neurons than
were necessary to model the autocorrelations for single neu-
rons. When interactions between nuclei in control animals
were considered, there were only two significant interactions
(out of a total of 49 pairs) from the GPe to the STN (see large
proportion of 0 lags in Fig. 3D), and there were no significant
interactions from the STN to the GPe (Fig. 3E). In the lesioned
animals, however, we found that in about 35% of the STN/GPe
pairs, there was a significant interaction of at least one bin from
both the GPe to the STN (Fig. 3D) and from the STN to the
GPe (Fig. 3E), and the interactions extended to 50–75 ms.
Thus, when GPe neurons were not grouped according to cell
type, interactions between the nuclei were substantially in-
creased (almost 10-fold) after dopamine depletion (GPe to
STN, KS-test, P � 0.001; STN to GPe, KS-test, P � 0.001).
Within and between GP-TI and GP-TA neurons, there were no
significant interactions in about 80% of the pairs considered
(Fig. 3, F and I). In the pairs that had significant interactions,
between 2 and 10 lagged bins were significant, showing inter-
actions over 10–50 ms. Finally, when STN interactions with
either GPe cell type were considered, there were no differences
in the interactions from GP-TI or GP-TA to the STN (Fig. 3G,
KS-test, P � 0.999) or from the STN to either GP-TI or GP-TA
(Fig. 3H, KS-test, P � 0.936).

Mutual information in the STN-GPe network in control rats
and parkinsonian rats. Having examined the time scales of the
interactions, we went on to calculate the mutual information
between pairs of simultaneously recorded STN/GPe neurons.
We did this by computing the difference in entropy, a measure

Fig. 3. Optimal numbers of lags for autocorrelations and cross-correlations. A and B: autocorrelations for all STN neurons and all GPe neurons, respectively, in
control and lesioned rats. C: autocorrelations for distinct cell types, GP-TI and GP-TA neurons, in lesioned animals. D and E: cross-correlations for transfer in
direction from GPe to STN (D) and from STN to GPe (E) in control and lesioned rats. F: cross-correlations between GP-TI/GP-TI pairs and GP-TA/GP-TA pairs
in lesioned rats. G and H: cross-correlations for transfer in direction from GP-TA or GP-TI to STN (G) and from STN to GP-TI or GP-TA (H) in lesioned rats.
I: cross-correlations for transfer from GP-TI to GP-TA and for GP-TA to GP-TI in lesioned animals. In all cases, optimal numbers (Nr) of 5-ms time bins (K
or L) were selected with BIC. Note that lags of 0 indicate no significant interactions.
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of information coding capacity, between the auto and full
models, where the nonlinear full model contains both the auto-
and cross-correlation terms. Thus this analysis quantifies the
additional information (reflected as a reduction in entropy) that
can be obtained about the responses of a given STN neuron (or
GPe neuron) using the activity of a paired GPe (STN) neuron,
after first taking into account the information about the re-
sponses of the first STN (GPe) neuron contained in its own
spiking history. Critically, this analysis is directional, so the
information flow can be assessed from the STN to the GPe, as
well as from the GPe to the STN. Qualitatively, this analysis is
similar to examining the amount of extra variance (or increase

in R2) that one would obtain in linear regression, when the
cross terms were included in the model. Thus it is an estimate
of how much better spikes in one nucleus can be predicted by
spikes in another nucleus.

We found that, consistent with the analysis examining the
number of significant lagged bins in cross-correlations between
STN and GPe neurons (see Fig. 3, D and E), there was
significantly more mutual information between nuclei in the
lesioned animals (Fig. 4, A and C) than in the control animals
(STN to GPe, KS-test, P � 0.001; GPe to STN, KS-test, P �
0.002). Thus, after chronic dopamine depletion, the spike trains
of STN neurons could be better predicted using the spike trains

Fig. 4. Information transfer across the STN-GPe network. Top plots show untransformed probabilities; bottom plots are same data replotted with log-transform
to emphasize the smaller proportions. A: information transfer from STN to GPe in control and lesioned rats. B: information transfer from STN to GP-TI or GP-TA
in lesioned rats. C: information transfer from GPe to STN in control and lesioned rats. D: information transfer from GP-TI or GP-TA to STN in lesioned rats.
GPe neurons were not divided and grouped according to cell type in A and C.
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of GPe neurons, and vice versa. When we split the GPe cell
population in lesioned animals, we found that 30–40% of
STN/GP-TI and STN/GP-TA pairs had significant interactions,
but the amount of information flow between the STN and
GP-TI neurons was similar to that between STN and GP-TA
neurons, considered in either direction (Fig. 4B, KS-test, P �
0.504; Fig. 4D, KS-test, P � 0.411).

Temporal profiles of directed information flow in the STN-
GPe network. We next examined the temporal profiles of the
interactions between nuclei. The temporal structure can be
characterized by examining the average value of the lagged
parameters for the cross terms (bl) in the model (see Eq. 1 in
METHODS). These terms characterize the sign (i.e., positive or
negative) and amplitude of the effect of a spike in one nucleus
on the probability of a spike in the other nucleus at the
indicated time lag. We found that the parameters in the le-
sioned animals, but not in the control animals, resembled
damped beta-frequency profiles, with �50-ms cycle periods,
and thus were centered at �20 Hz (Fig. 5). Taking into account
conduction delays of at least a few milliseconds between nuclei
and the rise times of postsynaptic potentials (Kita et al. 1983;
Kita and Kitai 1991), interactions at short latencies (5–10 ms)
are most informative when studying the monosynaptic influ-
ences of neurons in the STN-GPe network. Importantly, then,
at similar short latencies, the interactions from the STN to the
GPe and from the GPe to the STN in lesioned animals were
clearly out of phase (Fig. 5B), being “excitatory” (positive bl
parameters in Fig. 5) from the STN to the GPe and “inhibitory”
(negative bl parameters) from the GPe to the STN. Thus,
considering delays arising from propagation and integration,
and all recorded neuronal pairs, the parameters that account for
interactions between nuclei are consistent with the neurochem-
istry of this reciprocally connected network. However, when
GPe neurons were divided according to cell type, we found that
the temporal profiles of the GP-TA neurons did not reflect the
known microcircuitry and neurochemistry in a direct manner,
i.e., the interactions from STN to GP-TA and from GP-TA to
STN were in phase, both being excitatory at short latencies
(Fig. 5C). In contrast, the temporal profile of the more numer-
ous GP-TI neurons was similar to the average profile for all
GPe neurons, i.e., the interactions from STN to GP-TI and
from GP-TI to STN were markedly out of phase, being excit-

atory and inhibitory, respectively, at short latencies (Fig. 5D).
Interactions had a similar time scale for both the GP-TI and
GP-TA cell groups, and in both directions. Thus bidirectional
information transfer between STN and GPe was significantly
increased by dopamine depletion, and it was primarily the
phase that differentiated STN interactions with these two types
of GPe neuron.

The temporal profiles of the interaction parameters in the
STN-GPe network of lesioned animals resembled damped
beta-frequency oscillations. To investigate this issue further,
we fitted a damped oscillator function (sinusoid) to each set
of interaction parameters. A damped sinusoid fit the coeffi-
cient data in this study well (Table 1), at least for data
recorded in the lesioned parkinsonian rats (Fig. 5, B–D,
dashed lines).

Mutual information and temporal interactions between dif-
ferent types of GPe neuron. In the final analyses we considered
the mutual information between GP-TI and GP-TA neurons.
This analysis is complementary to previous analyses we have
carried out, in which we estimated the entropy of the entire
GPe population irrespective of cell type (Cruz et al. 2009).
When all recorded neuronal pairs were considered, we found
significantly more mutual information between GPe neurons in
the lesioned rats than in the control rats (Fig. 6A, KS-test, P �
0.001). Interestingly, when GPe neurons in lesioned animals

Fig. 5. Transfer functions between STN and GPe neurons derived from the full model (which includes both auto and cross terms) in control rats and lesioned
parkinsonian rats. A: model parameters for STN neurons and all GPe neurons in control rats, where there is little temporal structure to the transfer functions and
thus minimal interactions between nuclei. B: model parameters for STN neurons and all GPe neurons in lesioned rats. Note that short-latency interactions are
out of phase. C: model parameters for STN neurons and only GP-TA neurons in lesioned animals. Note that STN¡GP-TA and GP-TA¡STN transfer functions
are in phase at short latencies. D: model parameters for STN neurons and only GP-TI neurons in lesioned rats. Note that the transfer functions are not in phase
at short latencies. Dotted lines in each plot are the fits of damped sinusoids to the transfer functions. Positive and negative bl parameters indicate excitatory and
inhibitory transfer, respectively.

Table 1. Parameters of damped sinusoids that best fit the
transfer functions between STN and GPe neurons

Interacting Pairs R2 
 �, s f, Hz �, rad

STN to GPe (controls) 0.99 0.07 0.006 14.2 5.20
GPe to STN (controls) 0.99 0.11 0.002 187.3 2.37
STN to GPe (lesioned) 0.98 0.10 0.032 20.2 4.20
GPe to STN (lesioned) 0.94 0.05 0.048 19.4 2.46
STN to GP-TA 0.98 0.32 0.023 21.4 �0.41
STN to GP-TI 0.95 0.18 0.031 20.7 0.63
GP-TA to STN 0.96 0.26 0.019 16.1 2.28
GP-TI to STN 0.94 0.16 0.023 21.9 1.88

Parameter values are given for maximum amplitude (
), damping rate (�),
phase of the cosine function (�), and frequency characteristics (f) in subtha-
lamic nucleus (STN) and external globus pallidus (GPe) neurons. Note that
type-active (GP-TA) and type-inactive GPe (GP-TI) neurons were only defined
as such in lesioned animals.
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were divided according to cell type, there was more informa-
tion between GP-TI neurons than there was between GP-TA
neurons (Fig. 6B, KS-test, P � 0.001). However, there were no
differences in mutual information between pairs of GP-TI/
GP-TA neurons when they were considered from both direc-
tions (Fig. 6C, KS-test, P � 0.881). The temporal profile of the
GP-TI/GP-TI interactions was initially excitatory and oscil-
lated at beta frequencies (Fig. 7A). Interactions between only
GP-TA neurons were also initially excitatory, but they did not
oscillate as strongly at beta frequencies (Fig. 7B), consistent
with the corresponding cross-correlations. Interactions be-
tween GP-TI and GP-TA neurons were both inhibitory at short
latencies, but the GP-TI–to–GP-TA interaction remained in-
hibitory over the first 20 ms, whereas the GP-TA–to–GP-TI
interaction went immediately to excitatory at a lag of 5 ms
(Fig. 7, C and D). Thus there were differences in their temporal
profiles, which were reflected in the phase of their interactions.
Again, damped oscillator functions could be fitted to the
temporal profiles of interaction parameters (Table 2). Thus,
although bidirectional information transfer between GPe neu-
rons was significantly increased by dopamine depletion, the
amount and temporal profile of information transfer depended
on the type(s) of GPe neuron.

DISCUSSION

Chronic loss of dopamine from corticobasal ganglia circuits
profoundly alters neuronal activity therein and often leads to
the emergence of excessively synchronized oscillations, as
documented in patients with PD (Amirnovin et al. 2004;
Brown 2003; Brown et al. 2001; Levy et al. 2002; Moran et
al. 2008; Williams et al. 2002) and parkinsonian animals
(Bergman et al. 1998; Degos et al. 2009; Goldberg et al.
2004; Mallet et al. 2008a, 2008b; Nini et al. 1995; Raz et al.
1996, 2000, 2001; Sharott et al. 2005b). The changes in
microcircuit properties that give rise to these changes remain
to be elucidated, but it is possible that altered interactions in the
reciprocally connected network of glutamatergic STN neurons
and GABAergic GPe neurons contribute to these oscillations.
In the present study we used nonlinear time series analysis and
information theory techniques to quantitatively assess the in-
teractions between STN and GPe neurons in 6-OHDA-lesioned
parkinsonian rats and dopamine-intact control rats. This ap-
proach allowed us to directly estimate changes in the transfer
of information from one nucleus (or neuron type) to the other
while controlling for potentially confounding changes in ac-
tivity within an individual nucleus (or neuron), therefore over-
coming some of the limitations of linear cross-correlations.
Our key finding is that bidirectional information transfer be-

�
�

�
�

Fig. 6. Information transfer within the GPe. Top plots show untransformed probabilities; bottom plots are same data replotted with log-transform to emphasize
the smaller proportions. A: information transfer between all GPe neurons in control and lesioned rats, irrespective of cell type. B: information transfer between
only GP-TI neurons and between only GP-TA neurons in lesioned rats. C: information transfer from GP-TI to GP-TA and from GP-TA to GP-TI neurons in
lesioned rats.

Fig. 7. Transfer functions between different types of GPe neuron derived from the full model (which includes both auto and cross terms) in lesioned parkinsonian
rats. A: model parameters for pairs of GP-TI neurons. B: model parameters for pairs of GP-TA neurons. C: model parameters for GP-TI¡GP-TA transfer.
D: model parameters for GP-TA¡GP-TI transfer. Dotted lines in each plot are the fits of damped sinusoids to the transfer functions.
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tween STN and GPe neurons, and between different types of
GPe neuron, was significantly increased by chronic dopamine
depletion. Importantly, these augmented causal interactions in
the parkinsonian state reflected an underlying network oscilla-
tion in the beta-frequency band.

Limitations. Our analytical approach is innovative, and as
such, it was important to explore its utility in a well-charac-
terized data set (Cruz et al. 2009; Mallet et al. 2008a), seeking
corroboration of previous findings (so-called “face validity”).
Thus, in our first set of analyses, we did not distinguish
between types of GPe neuron, but we could still define inter-
nuclear interactions that were independent of activity within
nuclei. When GPe neurons were considered as a single popu-
lation, we were able to confirm that model parameters correctly
reflected the known neurochemistry and microcircuitry of the
STN-GPe network. Accordingly, excitatory interactions, pre-
sumably mediated by glutamate, dominated information trans-
fer from STN to GPe, and inhibitory interactions, presumably
mediated by GABA, dominated information transfer from GPe
to STN.

One key issue with our approach is the meaning of “infor-
mation transfer” between nuclei. We define this in the infor-
mation theoretic (statistical) sense and consider information
transfer to occur when a spike in the GPe alters the probability
of a spike in the STN, and vice versa. The course of this
statistical interaction affords what we term “directionality” and
can be underpinned by both direct and indirect synaptic con-
nections, including common inputs (Sharott et al. 2005a).
Information transfer, defined as above, will then encompass
whatever aspects of internuclear interaction represent the phys-
iological means of communication. However, the two are not
synonymous, and there are features of the dependent activity in
one nucleus that may be irrelevant for the “real” neural code
(whatever this may be).

Novel insights. The major novel findings were made when
we split the population of recorded GPe neurons into two
different, physiologically defined subpopulations, namely,
GP-TI and GP-TA neurons (Mallet et al. 2008a). Importantly,
we found that only the more numerous GP-TI neurons showed
interactions consistent with monosynaptic reciprocal connec-
tions with STN. Indeed, causal information transfer from
GP-TA neurons to STN neurons was initially excitatory. This
finding is surprising, because although the neurochemistry and
connections of GP-TA (and GP-TI) neurons have yet to be
elucidated, the vast majority of GPe neurons are thought to be
GABAergic and project to STN (Bevan et al. 1998; Smith et al.
1998). Our results suggest that the activity of GP-TI neurons is
of greater causal significance than that of GP-TA neurons for
the periods of reduced activity or quiescence that punctuate the
spiking of STN neurons during parkinsonian beta oscillations
(Kuhn et al. 2005; Levy et al. 2002; Mallet et al. 2008a,
2008b). However, precisely timed inputs from GP-TA neurons

could still serve to sculpt the intermittent periods of increased
activity and bursting exhibited by STN neurons. The STN–to–
GP-TA connection was excitatory at very short lags (0–5 ms),
which is remarkable because the spiking response of GPe
neurons to STN neuron discharge should take, on average, 10
ms to develop (Kita and Kitai 1991). However, in light of the
predicted time course, our analyses also imply that STN input
to GP-TI neurons is of causal importance for their recruitment
into the excessively synchronized GPe ensembles that emerge
during beta oscillations. It is unclear why STN and GP-TA
neurons should fire so close in time, but a common extrinsic
input, perhaps arising from frontal cortex and/or intralaminar
thalamus (Kita 2007), and/or inhibitory inputs from GP-TI
neurons might underlie this tight temporal coupling. Common
input, either excitatory or inhibitory, might also explain why
causal information transfer between pairs of GP-TI neurons or
pairs of GP-TA neurons was initially excitatory. For GP-TI
neurons, a common driving input is likely STN. On the other
hand, the short-latency inhibitory interactions between GP-TI/
GP-TA pairs suggests these cell types inhibit each other,
periodically dampening activity and promoting antiphase firing
across the two subpopulations.

Wider implications. Considerable theoretical work on net-
works of neurons generating oscillations suggests that, gener-
ally speaking, oscillations require some sort of excitatory/
inhibitory neuronal interaction (see for example, Brunel 2000;
Cohen et al. 1992; Ermentrout and Chow 2002; Terman et al.
2002). This can occur within a single neuron, between neurons
in a network (de Solages et al. 2008), or some combination of
these. All of these conditions are satisfied in the STN-GPe
network. Specifically, most STN and GPe neurons function as
autonomous pacemakers (Surmeier et al. 2005). Moreover, the
dominant STN-to-GPe/GPe-to-STN interaction is excitatory/
inhibitory, providing a possible substrate for oscillatory inter-
actions at the network level. Under normal circumstances,
some features of the STN-GPe network make synchronized
oscillations unlikely. Indeed, network-level oscillations can
occur in the so-called “balanced regime” (Renart et al. 2004),
and the STN-GPe network in the dopamine-intact animal is
probably not in this regime. A feature of the balanced regime
is that neurons receive a large amount of balanced excitatory
and inhibitory input. Thus, if inhibitory input is strongly
decreased, the activity in excitatory neurons will become
epileptic (Renart et al. 2004). This is not the case in the normal
STN-GPe circuit, however, because destruction of GPe leads to
only a small increase in STN activity (Ryan and Clark 1992).
However, in the present study we show that Parkinsonism is
associated with a 10-fold increase in causal information trans-
fer in the STN-GPe circuit, arguably bringing it into a balanced
state in which oscillations may be generated (Holgado et al.
2010). Both increases in the strength of functional coupling
between nuclei and decreases in the difference in the intrinsic
oscillation frequency between nuclei can lead to phase-locked
oscillations in neural responses (Ermentrout and Chow 2002;
Strogatz 1994). Both effects are suggested by our results, in so
far that internuclear coupling increased and oscillations of
single neurons in STN and GPe became matched, with a
frequency of �20 Hz. The resulting tendency to phase-locked
oscillations in STN-GPe could contribute to resonance phe-
nomena seen in parkinsonism. Indeed, our model parameters
were well fit by damped oscillators with resonance frequencies

Table 2. Parameters of damped sinusoids that best fit the
transfer functions within GPe

Interacting Pairs R2 
 �, s f, Hz �, rad

GP-TI to GP-TI 0.94 0.16 0.010 25.0 4.89
GP-TA to GP-TA 0.98 0.12 0.020 22.4 6.04
GP-TI to GP-TA 0.99 0.16 0.017 15.0 2.24
GP-TA to GP-TI 0.99 0.44 0.007 12.2 4.33
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of �20 Hz. Similar patterns of resonance have been reported
between the STN and cerebral cortex in PD patients (Euse-
bio et al. 2009). Thus excessive beta oscillations in PD
might arise from changes in STN-GPe interactions, without
ruling out the possibility that they instead may arise else-
where (outside the STN-GPe circuit), and are then perhaps
amplified by the resonance properties of the STN-GPe
circuit. Overall, these observations suggest that, at the
systems level in rodents and humans, elements of the corti-
cobasal ganglia circuit are well described as damped oscillators
with beta-band resonance in the parkinsonian state and that this
is true despite the differences between activity conduction
times in rodents and humans. Our current analysis adds to this
by also indicating that such resonance is not merely a conse-
quence of the autocorrelation function of individual neurons in
parkinsonism. Beta-band resonance is thus a highly conserved
feature of (dys)function in these networks after dopamine loss.

Conclusions. We have used nonlinear time series analysis to
quantify the interactions between the STN and GPe in control
and parkinsonian rats. Chronic dopamine depletion changed
firing rates and led to strong beta-frequency oscillations in the
STN-GPe network. This was accompanied by a pronounced
increase in bidirectional interactions between these nuclei,
measured with causal mutual information. This increased
strength of reciprocal effective coupling may not only contrib-
ute to excessive beta synchrony in Parkinsonism but also
impede information flow and representation within the STN-
GPe network and the rest of the basal ganglia.
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