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Cruz AV, Mallet N, Magill PJ, Brown P, Averbeck BB. Effects of
dopamine depletion on network entropy in the external globus
pallidus. J Neurophysiol 102: 1092–1102, 2009. First published June
17, 2009; doi:10.1152/jn.00344.2009. Dopamine depletion in cortical-
basal ganglia circuits in Parkinson’s disease (PD) grossly disturbs
movement and cognition. Classic models relate Parkinsonian dysfunc-
tion to changes in firing rates of basal ganglia neurons. However,
disturbances in other dynamics of neural activity are also common.
Taking both inappropriate firing rates and other dynamics into account
and determining how changes in the properties of these neural circuits
that occur during PD impact on information coding are thus impera-
tive. Here, we examined in vivo network dynamics in the external
globus pallidus (GPe) of rats before and after chronic dopamine
depletion. Dopamine depletion led to decreases in the firing rates of
GPe neurons and increases in synchronized network oscillations in the

frequency (13–30 Hz) band. Using logistic regression models, we
determined the combined and separate impacts of these factors on
network entropy, a measure of the upper bound of information coding
capacity. Importantly, changes in these features in dopamine-depleted
rats led to a significant decrease in GPe network entropy. Changes in
firing rates had the largest impact on entropy, with changes in synchrony
also decreasing entropy at the network level. Changes in autocorrelations
tended to offset these effects because autocorrelations decreased entropy
more in the control animals. Thus it is possible that reduced information
coding capacity within basal ganglia networks may contribute to the
behavioral deficits accompanying PD.

I N T R O D U C T I O N

How does dopamine depletion in cortico-basal ganglia cir-
cuits in Parkinson’s disease (PD) induce gross dysfunction in
motor control and cognition? An early and influential model,
which we will refer to as the rate model, of the neural basis of
the behavioral deficits seen in PD, proposed that dopamine has
opposing effects on direct and indirect pathways through the
basal ganglia (Albin et al. 1989; DeLong 1990). This model
suggested that differential rate changes in these two pathways
in PD ultimately leads to an over inhibition of basal ganglia
targets, resulting in decreased cortical activity and movements.

However, there are several findings that are inconsistent
with the rate model. For example, the direct/indirect distinction
on which the model is based is no longer clearly defined as
additional pathways linking the basal ganglia (BG) nuclei have
been discovered (Kincaid et al. 1991; Parent and De Belle-
feuille 1983; Parent and Hazrati 1995), and there is less

segregation between D1 and D2 receptors in the pathways than
was first thought (Aizman et al. 2000; Surmeier et al. 1996).
Furthermore, electrophysiological recordings in cortico-basal
ganglia circuits in PD and its animal models have shown that
chronic dopamine depletion is commonly associated with al-
terations in the firing patterns of neurons, which may occur in
the absence of, or in tandem with, changes in firing rates.
Notably, recordings from electrodes implanted in unmedicated
patients with PD have identified -frequency oscillations
(13–30 Hz) in several basal ganglia nuclei (Brown 2003;
Brown et al. 2001; Levy et al. 2002; Williams et al. 2002), and
similar oscillations have also been seen in primates treated with
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Berg-
man et al. 1998; Goldberg et al. 2004; Nini et al. 1995; Raz et
al. 1996, 2000, 2001) and rats treated with 6-hydroxydopamine
(6-OHDA) (Degos et al. 2009; Mallet et al. 2008a,b; Sharott et
al. 2005), both of which are important models of PD. These
oscillations are stronger when patients are off their dopamine
replacement medication and are reduced when patients prepare
movements (Brown and Williams 2005; Brown et al. 2001; Kuhn
et al. 2004b; Levy et al. 2002; Williams et al. 2002, 2003, 2005).
These data suggest that -frequency oscillations may detrimen-
tally affect information coding in the basal ganglia.

Thus disturbances in firing rates, oscillations, and synchro-
nization may be detrimental to information processing in the
basal ganglia and underlie the behavioral deficits seen in PD.
To study this hypothesis further, we estimated the entropy in
the GPe of control (dopamine intact) and Parkinsonian (6-
OHDA–lesioned) rats. Chronic dopamine depletion in this
model of PD caused changes in firing rates, auto-correlations
(oscillations), and cross-correlations (synchrony). Using logis-
tic regression models to define the network entropy of the spike
trains, we determined the collective impact of these three
features and the relative impact of each feature when consid-
ered separately.

M E T H O D S

Data collection

Experimental procedures were carried out on adult, male Sprague-
Dawley rats (Charles River, Margate, UK) and were conducted in
accordance with the Animals (Scientific Procedures) Act 1986 (UK).
The dataset described in this paper has been published previously
(Mallet et al. 2008a,b). Therefore we will only briefly describe the
recording methods here.

Electrophysiological recordings were made in 16 dopamine-intact
control rats and 23 6-OHDA–lesioned rats. Anesthesia was induced
with 4% vol/vol isoflurane (Isoflo, Schering- Plough, Welwyn Garden
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City, UK) in O2 and maintained with urethane (1.3 g/kg, ip; ethyl
carbamate, Sigma, Poole, UK) and supplemental doses of ketamine
(30 mg/kg, ip; Ketaset, Willows Francis, Crawley, UK) and xylazine
(3 mg/kg, ip; Rompun, Bayer, Germany). Extracellular recordings of
the spikes fired by ensembles of single neurons in the GPe were made
using multicontact “silicon probes” (NeuroNexus Technologies, Ann
Arbor, MI) where the distance between contacts was 100 m.

Unit activity in GPe was recorded during episodes of spontaneous
“cortical activation,” which contain patterns of activity that are more
similar to those observed during the awake, behaving state (Steriade
2000). Cortical activation was defined according to electrocortico-
grams recorded simultaneously with GPe activity (Mallet et al.
2008a). It is important to note that the neuronal activity patterns
present under this anesthetic regimen may only be qualitatively
similar to those present in the unanesthetized brain. Nevertheless, the
urethane-anesthetized animal still serves as a useful model for assess-
ing ensemble dynamics within the basal ganglia (Magill et al. 2006).
Indeed, in 6-OHDA–lesioned animals, exaggerated oscillations
emerge in cortico-basal ganglia circuits during activated brain states
(Mallet et al. 2008a,b), thus accurately mimicking the oscillatory
activity recorded in awake, unmedicated PD patients (Brown 2006).

6-OHDA lesions of dopamine neurons

Unilateral 6-OHDA lesions were carried out as described previ-
ously (Mallet et al. 2008a,b). Twenty-five minutes before the injection
of 6-OHDA, all animals received a bolus of desipramine (25 mg/kg,
ip; Sigma) to minimize the uptake of 6-OHDA by noradrenergic
neurons (Schwarting and Huston 1996a). Anesthesia was induced and
maintained with isoflurane (as above). The neurotoxin 6-OHDA
(hydrochloride salt, Sigma) was dissolved immediately before use in
ice-cold 0.9% wt/vol NaCl solution containing 0.02% wt/vol ascor-
bate to a final concentration of 4 mg/ml. Then, 3 l of 6-OHDA
solution was injected adjacent to the medial substantia nigra (4.5 mm
posterior and 1.2 mm lateral of bregma and 7.9 mm ventral to the
dura; Paxinos and Watson 1986). The extent of the dopamine lesion
was assessed 14 or 15 days after 6-OHDA injection by challenge with
apomorphine (0.05 mg/kg, sc; Sigma) (Schwarting and Huston
1996b). The lesion was considered successful in those animals that
made 80 net contraversive rotations in 20 min. Note that the
emergence of exaggerated oscillations after 6-OHDA lesions is not
dependent on apomorphine (Sharott et al. 2005). Electrophysiological
recordings were carried out ipsilateral to 6-OHDA lesions in anesthe-
tized rats 21–45 days after surgery, when pathophysiological changes
in the basal ganglia are likely to have leveled out near their maxima
(Vila et al. 2000).

Model

All analyses were carried out in Matlab. Scripts to carry out the
analyses are available from the authors on request. We wanted to
estimate the entropy in the network neural responses, as reflected by
single-unit activity recorded across ensembles. The entropy provides
an upper bound on the amount of information that can be carried by
a population of neurons, and we assume that the relative amount of
information in the basal ganglia is related to how well these nuclei (or
a single nucleus therein) can represent movements or cognition. To
estimate the entropy, we first have to estimate the probability distri-
bution of spiking for neurons in the network. If we analyze neural
responses using small time bins, the spikes can be treated as all-or-
none events. In this case, we can represent them as categorical 0s and
1s and build a classification model that attempts to predict whether a
neuron will (1) or will not (0) fire a spike in each time bin as a function
of its past firing and the firing of other neurons. If we can effectively
predict whether or not a neuron will or will not fire a spike in the next
time bin, the actual response in that time provides us with relatively
little information. Although there are a number of ways to approach

this estimation problem, the one that makes the least assumptions is
the logistic regression model (Christensen 1997). This approach is
related to the direct and maximum entropy approaches that are known as
multinomial or loglinear models in statistics (Averbeck and Lee 2006;
Christensen 1997; Schneidman et al. 2006; Strong et al. 1998). Once this
model has been estimated on the data, it can be used to directly estimate
the entropy of the spike train, using the approach outlined below.

We estimated the entropy rate of the spike trains in the GPe
network for both the control and the lesioned rats. The entropy rate, H,
of a stationary stochastic process, S, is given by

H S lim
t3

H st st 1, . . ., s1 (1)

Thus we estimated the entropy of the spike trains conditioned on
their past. Additionally, we were interested in the joint entropy of the
population of neurons. Thus s in Eq. 1 is a vector over an ensemble of
neurons. Ignoring the temporal component, the joint entropy of an
ensemble of n simultaneously recorded neurons can be factored as

H s1, . . ., sn
i 1

n

H si si 1, . . ., s1 (2)

Thus to estimate the entropy of our ensemble, we have to estimate
the entropy of each neuron in the ensemble, conditioned on all the
other neurons in the ensemble that we have not yet included. To
simplify the presentation of the results, we report the entropy of each
neuron conditioned on one other neuron or conditioned on each other
neuron in the simultaneously recorded ensemble. This is made explicit
in Eq. 3.

To begin the analysis, we discretized the spike trains at a bin width
of 5 ms, which represented a trade-off between temporal resolution
and computational efficiency. Each bin was a Bernoulli random
variable with a value of 0 or 1, and if more than one spike occurred,
it was only counted as a single spike. At this bin width, 0.4% of the
bins in the control animals and 0.2% of the bins in the lesioned
animals contained two spikes. We also analyzed a subset of our data
( 100 GPe neuron pairs from lesioned and control animals) with a
bin width of 2 ms and found results that were consistent with what
was found at 5 ms (data not shown).

After the spike trains were discretized, we fit logistic regression
models to estimate the conditional probabilities of a spike in each bin.
This model is given as

P si,t si,1:t 1, sjt,1:t, . . ., sjN 1,1:t g a0
k1 1

K1

ak1
si,t k1

j 1

N 1

k2 0

K2,j

bj,k2
sj,t k2

(3)

P(si,t si,1:t, sj1,1:t,. . ., sjN-1,1:t) specifies the posterior probability of
occurrence of a spike s 1, in neuron i at time t, given the response
of neuron i in previous time bins and/or other neurons j in previous
time bins. The variables a and bj, j 1,. . ., N 1, are coefficients that
are estimated as described below. K1 and K2,j represent the number of
time lags used. For the analyses reported in Figs. 3–5, n 1, i.e., we
carried out the analyses while conditioning on only one other neuron.
We refer to these as pairwise analyses. For the subsequent plots, we
included all neurons simultaneously recorded and thus N equaled the
number of neurons in the ensemble. The model parameters were
optimized for each neuron as described below. The link function g
was the logistic transform

g
1

1 e
(4)

Four versions of the model from Eq. 3 were fit, which allowed us to
examine the effects of different features of the ensemble response on
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the network entropy. The first model (the rate model) included only
the a0 term and characterized only the effect of the firing rate on the
entropy. All subsequent models included the a0 term and additional
terms. The second model (auto) included the lagged bins from the
same neuron and estimated the effect of autocorrelations, that is,
oscillations at the single-cell level, on the entropy. The third model
(cross) included the lagged and zero lag bins from one or more
additional neurons, but not the lagged bins from the same neuron, and
estimated the effect of cross-correlations, that is, synchrony between
pairs of neurons, on the entropy. The final model (full) included all of
three terms (rate, autocorrelation, and cross-correlation).

Parameter estimation

Model parameters were fit by maximizing the likelihood of the data
given the model parameters. The log-likelihood (ll) for our model was
given by

ll
t 1

T

si,tlog p si,t , sm 1 si,t log 1 p si,t , sm

(5)

where is the parameter vector, which for the full model and pairs of
neurons was {a0, a1, . . .aK, b0, . . .bK}. For the reduced models,
only subsets of these parameters and variables were included. We use
{sm} as shorthand to indicate the set of lagged variables appropriate to
the corresponding model. Therefore for example, for the auto model,
sm si,t 1, . . ., si,t K1

, for the cross model sm sj,t, . . ., sj,t K2
the full model would be the union of these, etc.

This equation can be maximized using the iteratively reweighted
least squares algorithm (IRLS; Hastie et al. 2001). However, we found
that this algorithm did not always converge, because of ill condition-
ing of the covariance matrix of lagged spikes. To alleviate this
problem, we used an on-line version of the IRLS algorithm, similar to
the adaptive filter or least mean squares algorithm used for fitting
linear regression (Ljung 1999). The parameter updates at iteration l for
this algorithm are given by

l 1 l sm si,t pl si,t
l, sm (6)

In this case, sm is the vector of spikes being used for prediction at the
corresponding time step for the model, containing either auto or cross
terms. We fit this model using the early stopping rule. To do this, the
dataset was split in half, and Eq. 6 was iterated on one half the data
and the log-likelihood (Eq. 5) was estimated on the other half of the
data. Iteration was stopped when the change in the log-likelihood was
below a criterion value given by

ll l 1 ll l

ll l 1 10 5 (7)

Normally the early stopping rule is used to control for overfitting and,
in this case, one looks for a minima of the log likelihood. However,
because we had far more data than parameters in our model, the log
likelihood reached a plateau, and we used a small change in this
plateau as our estimate of convergence.

Model selection

The number of lagged terms for either the auto- or cross-correla-
tion, K1 and K2,j, had to be estimated. To do this, we estimated models
with 1–30 lagged terms (i.e., K 1, K 2,. . .K 30) and used
model selection techniques to determine the optimal number of lags
(Fig. 2). We found that our entropy estimates were not strongly
dependent on the number of lags used, as long as we used enough
lags. The number of relevant lags is an interesting quantity by itself,
however, because it provides information about the time scale of the

correlations in the data. Thus if correlations extend over a longer
period of time, more lags will be necessary to capture them. To
estimate the optimal number of lags we used the Bayesian information
criteria (BIC). This is given by

BIC k 2ll k ln T (8)

where k is the number of parameters in the model, and T is the amount
of data available for estimating the model. The optimal number of lags
was determined by maximizing the BIC function. We also examined
entropy estimates using Akaike’s information criterion (AIC). Al-
though the number of lagged terms was always larger, because AIC
penalizes with 2k instead of –kln(T), the actual entropy estimates
were statistically indistinguishable.

Entropy

Once the model was optimized and fit, the entropy of the spike train
was estimated by calculating

H si sm
1
Tt 1

T

s 0

I

p si,t , sm log2 p si,t , sm (9)

Because our models had very few parameters (on average 15)
compared with the quantity of data available ( 20,000 bins), and
because we were using a cross-validated estimator, we did not have to
correct for bias in our entropy estimate. More specifically, because our
model uses cross-validation, it generates an upper bound on the
entropy and therefore we would not underestimate the entropy (Efron
and Tibshirani 1998). We also compared entropy estimates with and
without cross-validation and found that they were highly similar.

We also estimated the change (decrease) in entropy, or H, when
we included additional sets of parameters in the model. For the full
model, this was defined as

H
H s a0 H s a0, a1, . . ., aK1

, b0, b1, . . ., bK2

H s a0
. (10)

By including only the auto or cross terms, we can estimate the
separate effects of these factors on the entropy.

Higher-order terms

To study the presence of higher-order effects on the prediction of
the spikes, second-order terms were added to the model from Eq. 1

P si,t si,1:t, sj1,1:t, . . ., sjN 1,1:t g a0
k1 1

K1

ak1
si,t k1

j 1

N 1

k2 0

K2,j

bj,k2
sj,t k2

i 1

N 1

j i

N 1

ci,jsi,t sj,t (11)

The auto, cross, and full models were recomputed using the estimated
number of lags from the first-order model from Eq. 3 for the ensemble
of neurons. For each ensemble of neurons, we compared the maxi-
mum BIC value (BICm) for the ensemble of neurons (BICens) and the
BIC obtained with the additional higher-order terms (BIChot)

BICm BICens km BIChot km . (12)

Population model

We also developed a model that estimated the impact of pairwise
correlations on the entropy at the population level (see APPENDIX for
details). The effects at the population level cannot be measured
directly, because hundreds of neurons would have to be recorded
simultaneously. This would also require prohibitively large datasets to
get accurate entropy estimates. Estimates can be made, however, by
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making various assumptions. The model uses bootstrap estimates of
population covariance matrices in conjunction with a linear–nonlinear
estimator (consistent with our logistic regression model) to estimate
the entropy in an arbitrarily large population.

Mixed model analysis
Finally, we used a linear mixed model (also known as a random

effects model) to assess effects of dopamine lesion on our various
entropy parameters. This model was fit using the mixed function in
SPSS (version 14) with a fixed effect of lesion and a random effect of
subject. We also carried out a related analysis, by first calculating the
average value of each entropy statistic (i.e., entropy based on rate,
auto, cross, or full models) for each animal and then doing t-test
between the distributions of these average statistics for lesioned and
control animals. Results were similar to the random effects models.
We report results only for the random effects model (referred to
simply as ANOVA in the text).

R E S U L T S

The reported results were derived from ensembles of GPe
neurons simultaneously recorded in either dopamine-intact
control rats or 6-OHDA–lesioned rats. In the control rats, we
recorded 27 ensembles that had a total of 143 single units and
507 pairs of neurons. In the lesioned rats, we recorded 56
ensembles that had a total of 459 single units and 2,086 pairs
of neurons. Ensembles were defined as a given set of simulta-
neously record GPe neurons. The ensembles analyzed here
contained 19 neurons. The average ensemble size for the
control rats was 5.4 neurons and for lesioned rats it was 8.2.

Chronic dopamine depletion caused by 6-OHDA lesions of
midbrain dopamine neurons was associated with substantial
changes in the dynamics of neural activity within the GPe
network. Specifically, the mean firing rate of GPe neurons was
significantly reduced in the lesioned animals (Fig. 1A), there
was a small relative increase in the single-neuron oscillations
(i.e., autocorrelations) at 20 Hz (Fig. 1B), and a larger
increase in the relative synchrony of GPe neuron pairs (i.e.,
cross-correlations) at 20 Hz (Fig. 1C). These latter changes
also led to a large increase in the coherence between neuron
pairs, with a peak in coherence at 20 Hz (Fig. 1D). Thus
multiple features of the GPe neuron activity were affected in
the Parkinsonian animals. While it is clear that oscillations are
present, and oscillations (correlations) can only decrease en-
tropy, it is not clear how large the effect will be, especially
relative to the change in rates and the change in autocorrela-
tions. Therefore we will compare the size of the effects.

Because these changes in network dynamics have been
reported in detail previously (Mallet et al. 2008a), our primary
goal here was to examine the effect of these changes on the
entropy in the GPe network. To calculate the entropy, we fit a
logistic regression model. By incorporating different sets of
parameters in the model, we examined the separate effects of
firing rates, oscillations (autocorrelations), and synchrony
(cross-correlations) on the entropy and determined which of
these three features of the network response to dopamine
depletion most impacted on entropy.

We began by determining the number of lagged time bins
that were necessary in the model. This is an estimate of the
time interval over which a spike train is correlated with itself
(oscillations) or between pairs of neurons (synchrony), and
time bins that were not necessary are bins that had a statisti-

FIG. 1. Comparison of external globus pallidus (GPe) network dynamics in
6-hydroxydopamine (6-OHDA)-lesioned and control rats. A: mean SE firing
rates of all neurons. Difference significant at P 0.01. B: mean autocorrelation
for all neurons. C: mean cross-correlation for all neurons. D: mean coherence
for all pairs of neurons.
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cally negligible contribution. We found that the effect of the
autocorrelations rarely extended beyond 15 bins (75 ms) for
either the control or the lesioned animals (Fig. 2A). The effect
of the cross-correlations, however, rarely went beyond about
six bins (30 ms) for the lesioned animals, and never went
beyond one bin (0 time lag, synchronous spikes) for the normal
animals (Fig. 2B). In fact, for the control animals, 99.3% of the
pairs did not have a significant synchronous term and for the
lesioned animals 80% did not (Fig. 2B). Therefore the correla-
tion time was much shorter between neurons than within the spike
trains of a single neuron, and this effect was more dramatic for the
control animals than it was for the lesioned animals. The number
of parameters for the full model was then the sum of the number
for the auto and cross models (Fig. 2C).

Effects of rates, autocorrelations, and pairwise cross-
correlations on entropy

Next, we examined the difference in entropy between con-
trol and lesioned animals generating four versions of our
logistic regression model that took into account the following
features of neuronal activity: 1) only the firing rates; 2) the
firing rates and the autocorrelations; 3) the firing rates and the
cross-correlations (note for all entropy estimates we included

1 bin of cross-correlation); or 4) all three features (i.e., the

rates, autocorrelations, and the cross-correlations). The fourth
full model gives an estimate of the entropy in the network as it
accounts for all factors that can reduce the entropy in spike
trains. (Note that we use the term factor here and henceforth to
refer to the entire set of parameters that represent either the
auto or cross effects.) Importantly, however, in the first anal-
yses, we only estimated entropy while conditioning on one
other neuron, i.e., we considered pairwise and not ensemble
entropy. Below we will present results from an expanded
model that takes into account all simultaneously recorded
neurons (referred to as the ensemble) and ultimately an entire
population of neurons.

We found that the GPe network entropy was lower in the
lesioned animals compared with control animals for all four
models (Fig. 3, A–D). Furthermore, in all four cases, the
distributions were significantly different between control and
lesioned rats (2-way ANOVA with lesion as a fixed effect and
subject as a random effect, P 0.05 on fixed effect). Firing
rate differences, without considering any temporal dynamics,
had a large effect on the difference in entropy (Fig. 3A). This
is to be expected when using a bin size of 5 ms to analyze
neurons firing at 100 Hz, as was the case here. If only firing
rates are considered, a firing rate of 100 Hz results in a spike
in half the bins, i.e., the probability of a spike in each bin is 0.5.
When only two outcomes are possible (0 or 1 spike per bin),
the entropy is maximal when the probability of the outcome is
0.5 and thus the entropy in our case is maximal at 100 Hz and
falls off monotonically as the firing rate decreases below this.
Therefore significantly decreasing firing rates across a popula-
tion of GPe cells will necessarily decrease the network entropy,
given the firing rate distribution. Adding the autocorrelations to
the rate model, however, decreased the difference in entropy
between the lesioned and control animals (Fig. 3B), and as
such, the autocorrelations seemed to reduce the entropy more
in the control animals, a point that we will return to below.
Next we examined the effect of cross-correlations, that is,
synchrony at the level of pairs of neurons. The cross-correla-
tions seemed to have a minimal effect, because the entropy
distributions for the model with this factor were similar to the
distributions for the model with only the rate factor (Fig. 3C).
Finally, the full model, which took into account all three
factors, was similar to the autocorrelation model, which also
showed that the synchrony factor had a minimal effect for pairs
of neurons (Fig. 3D).

To directly determine the effect of either the autocorrelation
or cross-correlation factor on the entropy, we next examined
how much the entropy was decreased ( H) when either of
these factors was added to the rate model. These effects are
implicit in the results shown in Fig. 3. Consistent with those
results, H was larger for the control animals than for the
lesioned animals when the autocorrelation factor was consid-
ered (Fig. 4A). In contrast, when the cross-correlation factor
was considered, H values were small for both the control and
the lesioned animals, and as such, synchrony between pairs of
neurons contributed minimally to reducing the overall network
entropy (Fig. 4B). Finally, the full model was similar to the
auto model, because most of the change in entropy came from
the auto factor in the full model (Fig. 4C).

Entropy rate, i.e., entropy per second, as we calculated here,
gives an estimate of the information capacity of the network
and bounds how well the network can represent time-varying

FIG. 2. Optimal number of lags for auto- (K1) and cross-(K2) correlations.
A: optimal number of lagged time bins (5 ms each), selected with Bayesian
information criteria (BIC) for autocorrelations in lesioned and control ensem-
bles. B: same for cross-correlations. C: total of auto- and cross-correlations.
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behaviors, for example, movements. Entropy per spike is a less
direct measure of how well the network can code dynamic
behaviors because it has to be multiplied by the spike rate to
get an estimate of the information capacity per unit time.
However, although entropy per spike is ultimately not the more
relevant metric for understanding the coding capacity of the
network, it is interesting from a theoretical, efficiency point of
view (Rieke et al. 1995), particularly because the spike rates
were lower in the lesioned animals, and the effects of the
autocorrelations were larger in the control animals. We thus
tested whether the entropy per spike (rather than per bin or per
second) was similar in the two GPe networks. We found that
the entropy per spike was actually lower in the controls
compared with lesioned animals. As such, each individual
spike of each GPe neuron carried more information in the
lesioned animals (Fig. 5).

Based on these analyses we can now ask: which of these
changes in network dynamics contributed most to the de-
creased entropy observed in the GPe in lesioned animals? For
this we calculated the proportional effects of each of the three

factors: changes in rates, changes in autocorrelations, and
changes in cross-correlations. We found that the effects were
1.84, 0.88, and 0.04 for rates, autocorrelations, and cross-
correlations, respectively. In other words, the changes in firing
rates had the largest effect (decreased entropy), the changes in
autocorrelations actually made the entropy of the control and
lesioned networks more similar (but affected entropy to a lesser
degree than rate), and the changes in cross-correlations had the
smallest effect (but also decreased entropy). Until now, we
have only considered the effects of synchronous activity at the
level of pairs of neurons. Below we extend these analyses to
larger ensembles of simultaneously recorded neurons, as well
as to the whole population of GPe neurons.

Ensemble entropy
The previous analyses examined the effects of cross-corre-

lations and thus only considered the effects between pairs of
neurons. It is possible that these effects on network entropy
may become larger if the entire ensemble of simultaneously
recorded neurons is considered. To address this, we compared
the entropy when the effects of only one other neuron were
being considered (pairs) to the entropy when the entire ensem-
ble of simultaneously recorded neurons were being considered,
where an ensemble is the set of simultaneously recorded
neurons. We found that, in general, including all of the neurons
in an ensemble had a minimal additional effect, relative to
pairs, on reducing the entropy (Fig. 6, A and B). The effect was
slightly larger in the lesioned animals than it was in the control
animals (Fig. 6B), consistent with the fact that the (pairwise)
cross-correlation effect was slightly larger in lesioned animals
as well (Fig. 4B) and the fact that very few neuron pairs in
controls had a significant synchronous term.

FIG. 3. Comparison of GPe network entropy in lesioned and control rats
under each of the 4 models. A: entropy (H) when considering only firing rates.
B: entropy when autocorrelations are added to the rate model. C: entropy when
cross-correlations are added to the rate model. D: entropy in the full model,
which takes into account firing rates, autocorrelations, and cross-correlations.

FIG. 4. Decreases in entropy ( H) when additional parameter sets (factors)
are included in the models. All changes are with respect to the model that
includes only rates. A: H for autocorrelations. B: H for cross-correlations.
C: H for full model with auto- and cross-correlations.
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Higher-order effects

Another important way that our model can be extended is to
consider higher-order effects. Specifically, similar to measur-
ing cross-correlations linearly, we have only been considering
the effects of a single bin of neural activity in the model. It is
possible that patterns of spikes across two bins, either within
the spike trains of a single neuron or between pairs of neurons,
were important. To examine this, we estimated models that
included pairwise interactions either from the lagged time bins
of a single neuron or pairwise interactions between neurons in
ensembles (see METHODS). We found that, in all cases, including
these terms did not improve the model fit (BIC 0). Thus
there was no statistically supportable evidence in our data that
quadratic terms were important.

Modeling effects at the population level

In the preceding analyses, we found only modest effects of
cross-correlations between neurons on the network entropy. To
some extent, this is to be expected, because theoretical studies
showed that the effects of correlations tend to be small in pairs
of neurons, whereas they can be large in networks of neurons
(Averbeck et al. 2006; Narayanan et al. 2005). It is currently
not feasible to record from or estimate the entropy in 100s or
1,000s of neurons. It is possible, however, to estimate the
effects of correlations in large populations of neurons, using
estimates of pairwise correlations across the population and
a model of the population that makes certain assumptions.
As such, we can estimate how large the effects of cross-
correlations would be at the level of the entire GP neuron
population.

We carried out this analysis in two steps. First, we showed
that our model predicted correlation values in small ensembles

of 12 simultaneously recorded neurons (Fig. 7A). Although
we had a few larger ensembles, we were not able to sub-
sample enough different ensembles of 12 neurons to
derive reliable estimates. We randomly selected 400 re-
corded ensembles of various sizes and calculated the change
(decrease) in entropy ( H) as a function of ensemble size.
We used our model to predict average H values using
information about pairwise correlations between recorded
neurons. We found a close correspondence between our
model and the data (Fig. 7A). Thus for small ensembles, our
model closely predicted H.

Next, we used the measured values of correlations between
pairs of neurons to generate a population covariance matrix, for
populations of various sizes, and examined how H scaled
with the size of the population. We found that, although H
rises steeply up to a population size of 100 neurons, it flattens
after that and saturates at a value of 0.021 on average for the
GPe neuron population in the lesioned animals and 0.011 for
the control population (Fig. 7B). Thus the effects of cross-
correlations at the population level remain somewhat modest
compared with either autocorrelations or firing rates, but they
are much larger than they are in pairs.

Similar to the analysis carried out above for pairs of neurons,
we can examine the relative contribution of each factor to
decreasing the entropy using our network estimates. In this
case, we found that the effects were 1.838, 0.882, and 0.051
for rates, autocorrelations, and cross-correlations, respectively.
Thus while there is a large increase in the effect of correlations
at the population level, it is still small compared with the other
effects.

D I S C U S S I O N

We examined the effects of changes in activity dynamics
brought about by chronic dopamine depletion on the entropy
in the GPe network. Our analyses showed that network
entropy, and thus information coding capacity, was signif-
icantly reduced in the lesioned animals compared with
controls. This reduction in entropy arose chiefly because of
decreases in GPe neuron firing rates, although increases in
cross-correlations (synchrony) between neurons also signif-
icantly contributed. Interestingly, the autocorrelations in
GPe were more structured in control animals and actually
decreased the entropy more in these animals than it did in
the lesioned ones. As with previous studies (Averbeck and
Lee 2006; Petersen et al. 2001) and consistent with theoret-

FIG. 5. Entropy per spike of full model. Data for all GPe neurons is shown,
but entropy rate (H per spike) for each neuron was divided by the average
firing rate of that neuron.

FIG. 6. Comparison of ensemble and pairwise entropy. A: scatter
plot of entropy in pairs (Hpairs) and entropy in corresponding
ensemble (Hens). Each ensemble is plotted against all of the
pairs into which it can be broken down. Points on the diagonal
show no additional effect of additional neurons in the ensemble.
B: distribution of differences between entropy in pairs and
entropy in corresponding ensemble.
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ical predictions (Averbeck et al. 2006; Shamir and Sompo-
linsky 2004), the effects of cross-correlations were limited
at the level of pairs of neurons. However, the effects of
synchronized activities were larger at the network level
(Averbeck et al. 2006; Narayanan et al. 2005).

Classical theories of basal ganglia dysfunction in movement
disorders have suggested that decreases in neural activity in the
GPe, which is part of the indirect pathway, would contribute to
movement deficits (Albin et al. 1989; DeLong 1990). Consis-
tent with this idea, we did find that the spike rates of GPe
neurons were decreased. We have, however, taken a different
perspective on this decrease in firing rates. We examined the
effect of this decrease on the entropy in the network, and
therefore we assumed that the decrease in firing rates changes
the ability of the population to code information. An advantage
of using information theory to examine these effects is that it
allows us to compare, within a single analytical framework, the
effects of changes in rates to the effects brought about by
changes in other activity dynamics, such as cross-correlations
and autocorrelations. The classical theory has no way of
accounting for how changes in activity dynamics other than
firing rates influence behavior, because it assumes that the total
activity of a nucleus somehow relates to whether a specific
movement will be executed.

Implicit in our approach is the idea that activity patterns
within the GPe code information. Thus we are assuming that
neurons within the basal ganglia have tuning functions (Bous-
saoud and Kermadi 1997), similar to cortical and thalamic
neurons (Georgopoulos et al. 1982), such that the activity of
single neurons varies in a continuous way with some underly-
ing task variable, such as force or direction (Pasquereau et al.
2007). Thus the activity of an individual neuron would not
accurately code information about movements. Rather, the
activity across a population of neurons would code that infor-
mation. Simply increasing or decreasing firing rates in the
population would not necessarily affect the movement being
encoded. From this point of view, the entropy of the network
constrains how well the network can code information, and it
is these coding constraints that might lead to movement diffi-
culties.

The exaggerated -frequency synchronization seen in the
cross-correlations in the GPe in our animal model is similar to
that recorded in the subthalamic nucleus (STN), which is
reciprocally connected with GPe in patients with PD (Brown
2003; Brown et al. 2001; Levy et al. 2002; Williams et al.
2002). These studies have shown that activity was stronger
when the patients were off dopamine replacement medication
(Brown et al. 2001; Williams et al. 2002), that the oscilla-
tory activity decreased during movements or movement

preparation (Brown and Williams 2005; Kuhn et al. 2004b;
Levy et al. 2002; Williams et al. 2005), and that this
decrease was facilitated if patients were on dopamine med-
ication (Doyle et al. 2005). Taken together, this work
suggests that dopamine desynchronizes activity in basal
ganglia networks, and this desynchronization may be im-
portant for action initiation. From the point of view of
information coding, the -frequency synchronization might
constrain the ability of the network to represent or encode
movements. Thus our finding is consistent with recordings
in PD patients with movement difficulties. That said, the
excessive synchronization in GPe is concomitant with de-
creased firing rates therein and therefore, most probably,
changes in both these features of activity are important.

A key consideration of our study is that we analyzed GPe
activity recorded in anesthetized animals. We assume that the
entropy changes occurring under anesthesia are also relevant
for the GPe in the awake, behaving animal. There is good
evidence to support the extrapolation of our findings to the
unanesthetized state. First, the synchronization we analyzed
occurs in both anesthetized and awake 6-OHDA–lesioned rats
(Degos et al. 2009; Mallet et al. 2008a,b; Sharott et al. 2005).
Moroever, we restricted our analysis to the GPe activity
present during a spontaneous activated brain state, which
mimics that accompanying the alert behaviors in which
osciallions are most prominent in PD patients and lesioned rats
(Mallet et al. 2008a; Sharott et al. 2005; Urrestarazu et al.
2009). In addition, other studies have shown that network
dynamics in the undriven state are similar to those in the driven
state. For example, studies of primary visual cortices in anes-
thetized animals have shown that V1 neurons dynamically drift
through states that are similar to those seen when the system is
driven (Kenet et al. 2003), and neural activity patterns are
largely caused by intrinsic dynamics as opposed to sensory
inputs (Fiser et al. 2004). Thus the entropy in the GPe network
during behavior may be similar to the entropy during rest.
Second, the network dynamics we define here are probably the
result of plasticity in the network because they only appear
several days after dopamine neurons are lesioned (Degos et al.
2009; Mallet et al. 2008b). Thus disturbed activities in the
anesthetized state are likely caused by underlying changes in
the microcircuit and therefore may still be present in the awake
state, and the entropy reductions we showed will likely pertain
to behaving animals. However, because synchronized oscil-
lations are dynamic phenomena, which fluctuate in time as a
function of dopamine and behavior (Doyle et al. 2005; Kuhn et
al. 2004a), it would still be of interest to test in the future
whether and how network entropy changes during specific
phases of a movement.

FIG. 7. Decrease in entropy ( H) as function of ensemble
size and model prediction. A: average H in 400 random
ensembles of simultaneously recorded neurons of each size
(thin lines; error bars are SE) and model predictions (thick
lines). B: predicted H as a function of ensemble size for large
populations.
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The results of functional surgical procedures for PD also
have bearing on our coding hypothesis. Focal lesions of the
STN or internal pallidum have positive therapeutic effects on
the motor symptoms of PD. However, the information coding
capacity of the lesioned nuclei must decrease because the
number of available neurons is reduced. Moreover, therapeutic
high-frequency stimulation (HFS) of the STN also reduces the
entropy per spike of single neurons in the pallidum and
thalamus in Parkinsonian monkeys (Dorval et al. 2008). How-
ever, although HFS decreased GPe bits per spike, it also
increased firing rates (Dorval et al. 2008). Because of this rate
change, and because extrapolating single-neuron entropy cal-
culated in bits/spike to the network level (calculated here in
bits per second) is not straightforward (see Fig. 5), it is unclear
whether or not the overall GPe network entropy is decreased
with HFS.

Regardless, one implication of the functional surgical pro-
cedures is that some aspects of synchronization are not cap-
tured by our single-nucleus estimation of information coding
restriction, and this demands consideration of the extended
cortico-basal ganglia circuit. Indeed, synchronization limits the
local information coding space but is also influential over
subsequent stages of processing. Moreover, downstream re-
sponses to the deleterious effects of synchronization might
exhibit frequency tuning, such that not all frequencies are
equivalent across the coding space (Eusebio et al. 2008).
Although we can estimate the upper limit of information
coding capacity, we do not know what aspects of the
information coding space may be more influential or more
deleterious to targets. Nevertheless, the use of information
theory provides us with a starting point and an analytical
framework with which to evaluate the separate and com-
bined effects of firing rate, oscillations, and synchronization
in the basal ganglia.

The single-cell and network mechanisms underlying the
emergence of these changes in GPe are largely unknown, but
deranged afferent activity is likely to play an important role.
Excessively synchronized rhythmic “drive” from the STN in
lesioned animals is a good candidate substrate for the increased
synchronization observed in GPe (Mallet et al. 2008a). How-
ever, because STN neurons are hyperactive during Parkinso-
nian oscillations (Mallet et al. 2008b), the most parsimonious
explanation for the depressed firing rates in GPe is that the
network receives an inappropriately strong inhibition from
striatum after dopamine loss (Mallet et al. 2006). Lesion-
induced alterations in the intrinsic “pacemaking” properties of
GPe neurons (Surmeier et al. 2005) might well bring about the
changes in their firing regularity (autocorrelations). An impor-
tant issue for future research is thus to understand which
changes in microcircuit properties give rise to the decreased
firing rates and increased synchronization. Microcircuit prop-
erties have to change somewhere, to give rise to the changes in
dynamics, because the dynamics are a function of the micro-
circuit. One powerful way to explore the changes in microcir-
cuit properties responsible for the changes in dynamics will be
to build realistic spiking-neuron network models of this system
and examine the changes in the model network that could give
rise to the changes seen in the network in vivo. The basal
ganglia should be a fruitful place to apply such techniques,
because so much is known about the microcircuitry (Smith et
al. 1998).

Conclusions

Our analyses have shown that there are changes in firing
rates, single-cell oscillations, and synchrony in the GPe when
dopamine is chronically depleted, as in PD. We used informa-
tion theory techniques to show how these changes in network
dynamics lead to changes in the entropy of the system and
found that there is significantly less entropy in the Parkin-
sonian GPe network. Thus our results are consistent with the
general hypothesis that changes in network dynamics lead to
changes in the entropy of the GPe network, and it is this
impaired ability of the network to code information that may
contribute to motor and cognitive deficits in disorders
like PD.

A P P E N D I X

Population model
In this APPENDIX we present the mathematical details of our popu-

lation model. We were interested in the effects of correlations at the
population level. From the data, we directly estimated H in ensem-
bles of 19 simultaneously recorded neurons. However, the effects of
correlations (synchronization) will likely be larger at the population
level (Averbeck et al. 2006). Because we currently do not have
techniques for either recording from or estimating information in
entire populations of neurons, we have to estimate the impact of
correlations at the population level using model extrapolations. To
make this estimate, we developed a model that is consistent with
the results of the empirical analyses. Specifically, we used only
measured pairwise covariances to estimate H at the population
level.

Only linear terms were significant in the logistic regression model;
adding the higher-order terms did not improve prediction (see RE-
SULTS). Thus our model was developed by estimating the performance
of a linear classifier. Derivation of linear classifiers is generally done
by making Gaussian assumptions on the distribution of the variables
used for prediction. Although our individual variables are binomial,
for large neuronal populations, linear functions of binomial random
variables will converge to Gaussians, via the central limit theorem
(Papoulis 1991).

Least squares estimators can be used to find optimal linear classi-
fiers (Duda et al. 2001). Thus our classifier is given by

i s6b (A1)

Here, i is an estimate of whether or not a spike occurred (not
constrained to lie between 0 and 1 as it is in the logistic regression
model), the vector s represents the spiking in the set of simultaneously
recorded neurons, and the vector b is our decision boundary estimated
with least squares. It can be shown that, for a particular choice of i
values, the linear decision boundary b will be the same as the Fisher
decision boundary (Duda et al. 2001). Specifically, if we set

i
1/ 1 ri :si 0

1/ri:si 1 (A2)

where ri is the firing rate of neuron i, it can be shown that b is the
Fisher discriminant boundary. We can find b and the residual variance
of this estimator using standard linear model results

b ssT 1 s i (A3)

i
2

i sTb 2 (A4)

If we define the matrices

Css ssT
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C s s i (A5)

We can write the residual variance as

i
2

i sTCss
1C s

2

i
2

i i C sCss
1C s (A6)

Thus to estimate the residual variance, we have to calculate the
matrices C s and Css. The variance of the dependent variable is given
by

2
i i 1/ 1 ri 1/ri (A7)

Css can be measured directly in the data as this is the covariance
matrix between spike trains. Individual elements of this matrix are
given by

Ci,j si si sj sj (A8)

The covariance between sj and the i is

C
isj i i sj sj Ci,j

2 (A9)

To estimate our classification performance, which can be used to estimate
the residual entropy, we have to know the difference in the means for the
estimates of a spike and no spike and the variance of the distributions
about the means generated by our linear estimator. The means can be
calculated from

0
j 1

N

bjp sj 1 si 0

1
j 1

N

bjp sj 1 si 1 (A10)

The conditional probabilities are given by

p sj 1 si 1
p sj 1,si 1

p si 1
mi,j

ri
(A11)

where

mi,j Ci,jrirj (A12)

is the second, noncentral moment. Correspondingly we calculate

p sj 1 si 0
p sj 1,si 0

p si 0
rj mi,j

1 ri
. (A13)

Finally, the total variance i
2 can be factored into bias and variance

components, which allows us to calculate the variance around the
mean estimates. Specifically

i
2

i
2

1 1/ri
2

0 1/ 1 ri
2. (A14)

Our classification accuracy is given by

d 1 0

i
(A15)

This can be converted to fraction correct classification performance
using the error function (Averbeck and Lee 2006)

p t̂ 2 t 1 2 1/2

d/2

exp
x2

2
dx (A16)

The fraction correct can be converted to H.
The model was estimated by sampling covariance matrices ran-

domly from the distribution of covariance values estimated for all

pairs of neurons and estimating H for the corresponding population.
The average covariance values for the lesioned data were 0.0088, and
the average values for the control data were 0.0068. This was done
5,000 times, and the results were averaged to give the curves shown
in Fig. 7. Firing rates for all neurons were set to 0.125 spikes/bin in
the lesion data and 0.325 spikes/bin in the control data. Although
these rates are slightly higher than the average rates estimated in the
data, they give average entropy values that match those in the data.
Because entropy is a nonlinear function of rate, the average rate does
not give the average entropy. Thus we could match the rates or the
entropy, so we chose to match the entropy.
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