Advances in the molecular understanding of GABA_B receptors

Andrew Billinton, Antoinette O. Ige, J. Paul Bolam, Julia H. White, Fiona H. Marshall and Piers C. Emson

The molecular nature of the metabotropic GABA_B receptor was for some time a mystery, however it was recently discovered that two related G-protein-coupled receptors have to heterodimerize to form the functional GABA_B receptor at the cell surface. This review discusses the most recent findings in the rapidly expanding field of GABA_B receptor research, and includes a summary of all splice variants of both receptor subunits identified to date. It also evaluates emerging evidence that certain splice variants might play a role in determining pharmacologically distinguishable receptors, and reviews receptor localization at the sub-cellular level and involvement in neuronal development.

Andrew Billinton Antoinette O. Ige Piers C. Emson* Dept of Neurobiology, Babraham Institute, Babraham, Cambridge, UK CB2 4AT. *e-mail: piers.emson@ bbsrc.ac.uk

J. Paul Bolam MRC Anatomical Neuropharmacology Unit, Mansfield Road, Oxford, UK OX1 3TH.

Julia H. White Fiona H. Marshall

7TM Receptor Systems, Molecular Pharmacology Dept, GlaxoWellcome Research and Development, Medicines Research Centre, Stevenage, Hertfordshire, UK SG1 2NY.

Recent advances in GABA receptor biology have resulted in elucidation of the molecular structure of a GABA_B protein with similarity to metabotropic glutamate receptors (mGluRs), $GABA_{B(1)}$ (Ref. 1), and the subsequent discovery by several laboratories that $GABA_{B(1)}$ heterodimerizes with $GABA_{B(2)}$ to form a functional G-protein-coupled receptor (GPCR) (Refs 2-7). For specific intervention in disorders such as epilepsy, pain and drug addiction, pharmacological subtypes would be therapeutically useful, and evidence from some pharmacological studies has indicated that subtypes do exist⁸. Since the initial cloning of $GABA_{B(1a)}$ and $GABA_{B(1b)}$, several other splice variants have emerged, in addition to splice variants of GABA_{B(2)} (Refs 9–12). There is evidence to suggest $GABA_{B(1a)}$ and $GABA_{B(1b)}$ might represent pre- and postsynaptic subtypes, respectively, and evidence of functional heterogeneity has recently been published¹³. There are also indications that molecular subtypes might be pharmacologically distinguishable¹⁴. Investigation of structural determinants of ligand binding at GABA_B receptors has indicated a venus flytrap model, with specific serine and glutamine mutations differentially affecting agonist and antagonist binding, and serine 269 being crucial for the Ca²⁺ sensitivity of the receptor^{15,16}. Interestingly, although both mGluR_4 and $\mathrm{GABA}_{\mathrm{B(2)}}$ can traffic GABA_{B(1)} to the cell surface, only GABA_{B(2)} and $GABA_{B(1)}$ can form a functional receptor¹⁷. It would be surprising if physiologically relevant GABA_B receptor subtypes did not occur, and studies on the nature of ligand binding and splice variants will undoubtedly advance the quest for subtypes, which could confer different physiological and pharmacological properties.

GABA_B receptor splice variants

Similar to the mGluR subtypes 1,4,5,7 and 8, $GABA_B$ receptor genes, $GABA_{B(1)}$ and $GABA_{B(2)}$ exist in

different splice forms. The cloning of rat and human $\text{GABA}_{B(1)}$ showed that it could exist as two splice variants, $\text{GABA}_{B(1a)}$ and $\text{GABA}_{B(1b)}$ (Ref. 1). These differ at the N terminus, with the initial 147 amino acids of this region of $\ensuremath{\mathsf{GABA}}_{B(1a)}$ being replaced with a different, shorter sequence of 18 amino acids in $\text{GABA}_{B(1b)}.$ Human $\text{GABA}_{B(1a)}$ is encoded by 22 exons (20 exons in the rat¹⁰), the first four of which are missing from $GABA_{B(1b)}$, and the alternative N terminal region is produced from the fifth exon and fourth intron of $\text{GABA}_{B(1a)}$ (Ref. 18). There is a major difference between mGluR gene splicing and GABA_B gene splicing – $\text{GABA}_{B(1)}$ can be spliced at the Nterminus, whereas only C terminal splice variants of mGluRs have, as yet, been found¹⁹. More recently other $GABA_{B(1)}$ splice variants have emerged. Two variants based on rat GABA_{B(1b)} were reported: a 31 amino acid insertion, which produces a variation between the fifth transmembrane domain (TMD) and the second extracellular loop [GABA_{B(1c)}], and a 566 base-pair insertion causing a divergent C terminus with a 25 amino acid insertion $[GABA_{B(1d)}]$ (Ref. 9). The same $GABA_{B(1c)}$ variant was also found by other workers, and was shown to couple [in the presence of $GABA_{\rm B(2)}]$ to $K_{\rm ir}3.1/3.2$ channels in Xenopus oocytes $^{10}.$ These workers showed that this insertion could occur in both $GABA_{B(1a)}$ and $GABA_{B(1b)}$. A different version of $\text{GABA}_{B(1c)}$ is reported in humans, which has a deletion in the N terminus of $GABA_{B(1a)}$. More recently, a $\ensuremath{\mathsf{GABA}}_{\ensuremath{\mathsf{B}}(1e)}$ variant has been reported, in which exon 11 is spliced out of $GABA_{B(1a)}$ in both rat and human tissue (Ref. 12). This induces a frame shift in exon 12, causing the introduction of two stop codons, and resulting in a truncated form of the $GABA_{B(1)}$ receptor (see Fig. 1 for splice variant summary).

There are currently three reported splice variants of the human GABA_{B(2)} gene¹¹. These differ in the extreme C terminal region; one has a deletion $[GABA_{B(2b)}]$ from the original published sequence $[GABA_{B(2a)}]$, and the other a divergent C terminus $[GABA_{B(2c)}]$. These variations do not affect the region of the coiled-coil, and are unlikely to disrupt the interaction of GABA_{B(1)} and GABA_{B(2)} and hence heterodimer formation, but interactions with proteins containing Gly-Leu-Gly-Phe motif PDZ domains could be affected. PDZ domains, which bind to short peptide sequences, are thought to be important for

Fig. 1. Comparison of GABA_{B(1)} and GABA_{B(2)} splice variant protein structures. Black filled segments represent transmembrane domains, red filled segments represent spliced in regions, gaps linked by a 'V' represent spliced out regions. Dotted lines show points of identical sequence. 1c* has been found in human, but not rat. References: 1a/1b (Ref. 1), 1c(a)/1c(b) (Refs 9,10), 1d (Ref. 9), 2a/2b/2c (Ref. 11), 1e (Ref. 12)

the specific localization of proteins at synapses, including the insertion, endocytosis and recycling of target proteins²⁰.

Distribution and localization of $\mathsf{GABA}_{\mathsf{B}}$ receptor splice variants

The distribution of $GABA_B$ heterodimer component proteins, $GABA_{B(1)}$ and $GABA_{B(2)}$, is widespread throughout the rodent and human CNS (Refs 21,22), in

Fig. 2. Distribution of $GABA_{B(1)}$ and $GABA_{B(2)}$ mRNA by *in situ* hybridization using variant nonspecific oligonucleotides (a), (b), $GABA_{B(1)}$ and $GABA_{B(2)}$ proteins by immunohistochemistry using variant nonspecific antibodies (c), (d) and $GABA_{B}$ binding sites by receptor autoradiography (e). The mismatch of mRNA signals in the striatum is clear in (a) and (b). A comprehensive overlap of $GABA_{B(1)}$ and $GABA_{B(2)}$ protein localization is evident from immunohistochemistry with polyclonal antibodies (c) and (d), with cortex, hippocampus thalamus and cerebellum showing high levels of receptor subunit expression. Part (e) shows the binding of 0.5 nm [³H]-CGP62349, a high affinity antagonist radioligand for GABA_B receptors⁴², which is in good agreement with immunohistochemical localization (c) and (d) [(e) image courtesy of Prof. N. Bowery, University of Birmingham, UK]. Labels: 1, striatum; 2, brainstem; 3, thalamus; 4, hippocampus; 5, cerebellum; 6, cortex. Scale bar, 1 mm.

http://tins.trends.com

agreement with receptor binding studies^{23,24} (see Fig. 2). mRNAs encoding $GABA_{B(1)}$ and $GABA_{B(2)}$ colocalize in 95% of neurones in regions expressing both mRNA species¹¹. mRNA encoding GABA_{B(2)} is exclusively neuronal¹¹, but mRNA encoding $GABA_{B(1)}$ has been localized to both neurones and glia^{1,11}. Brain regions in which $\text{GABA}_{B(1)}$ and $\text{GABA}_{B(2)}$ proteins do not coexist, might contain additional GABA_B proteins that are capable of forming functional receptors. $GABA_{B(2)}$ mRNA is barely detectable in the rat caudate putamen (Fig. 2b), whereas GABA_{B(1)} mRNA is relatively abundant in this region (Fig. 2a), leading to speculation as to the existence of further GABA_{B} receptor proteins¹¹. Both $\text{GABA}_{B(1)}$ and $\text{GABA}_{B(2)}$ immunoreactivity are present in the human caudate nucleus and putamen, and the diffuse non-cell body staining (neuropil) seen with a $\text{GABA}_{\text{B(2)}}$ antiserum, suggests primarily a nerve terminal localization²². Striatal output neurones and interneurones of different subclasses express $GABA_{B(1)}$ protein²⁵, however this has not been investigated in detail for GABA_{B(2)}. Low levels of $GABA_{B(2)}$ mRNA are also detected in hypothalamus, septum and brainstem (Fig. 2). These brain areas will be subjected to further close scrutiny, in case they contain potential protein partners for $\text{GABA}_{B(1)}$ or $\text{GABA}_{B(2)}.$ Examination at the electron microscopic level using immunogold labelling techniques highlights receptor localization at the plasma membrane, but also there is some intracellular localization of $GABA_{B(1)}$ and $GABA_{B(2)}$ in the rat cerebellum²⁶ (Fig. 3). Much of the observed labelling is extrasynaptic, but both proteins are also detected in parallel fibre presynaptic terminals and at the edge of postsynaptic densities. $GABA_{B(1)}$ is also located both pre- and postsynaptically in the substantia nigra pars compacta (Fig. 3).

 $GABA_{B(1a)}$ and $GABA_{B(1b)}$ mRNAs are widely distributed in the majority of brain regions, although at varying levels²⁸. In the cerebellum, $GABA_{B(1a)}$ mRNA is predominantly located in the granule cells, and $GABA_{B(1b)}$ mRNA is mainly located in the Purkinje cells. Localization of the rat GABA_{B(Ic} variant is similar to that of $GABA_{B(1a)}$ and $GABA_{B(1b)}$ which is not surprising, given that probes for $GABA_{B(1a/b)}$ variants would also detect the TMD5 insertion variants¹⁰. $GABA_{B(1b)}$ mRNA is found peripherally and centrally, whereas $GABA_{B(1d)}$ mRNA (divergent C terminal) only occurs in the eye, spleen and bladder outside the CNS. $GABA_{B(1a)}$ is the predominant mRNA species in the adult rat^{29,30}, whereas the predominant protein is $\text{GABA}_{B(1b)}$ (Ref. 31), which might be a result of the unknown stoichiometry between mRNA levels and protein synthesis. $GABA_{B(1e)}$ mRNA is distributed predominantly in peripheral organs such as lung, kidney and intestine, with much lower levels of transcript found in the CNS (Ref. 12).

Co-immunoprecipitation (co-ip) experiments using pan and splice variant-specific antibodies on solubilized native $GABA_B$ receptors, confirmed the association between $GABA_{B(2)}$ with either $GABA_{B(1a)}$

Fig. 3. Ultrastructural localization of immunolabelling for GABA_B receptors in the molecular layer of the cerebellum (a) and (b) (Ref. 26) and in the substantia nigra pars compacta (c). (a) and (b) Immunolabelling for $GABA_{B(1)}$ (a) and $GABA_{B(2)}$ (b) in the molecular layer of the cerebellum is largely associated with Purkinje cell dendrites (labelled d) and spines (labelled s). Labelling is located at the plasma membrane but also at intracellular sites, including the spiny apparatus at the necks of spines (arrows). Immunolabelling also occurs presynaptically in terminals formed by parallel fibres (some indicated by asterisks). The immunolabelling is mostly extrasynaptic but sometimes occurs at the edge of postsynaptic densities (arrowheads). The small dendritic structure on the left in (b) is apposed by a bouton (labelled b), which is probably derived from a stellate cell or basket cell. Although not synaptic at this level, immunogold particles are associated with the membrane to which it is apposed. (c) Immunolabelling for $\mathsf{GABA}_{\mathsf{B}(1)}$ occurs at both pre- and postsynaptic sites in the substantia nigra pars compacta. The dendrite (labelled d) in longitudinal section has several immunoparticles associated with intracellular sites and the plasma membrane. The dendrite is apposed by several boutons but two of them (labelled b1 and b2) are also immunolabelled. Bouton b1 is in symmetric synaptic contact with the dendrite and contains a single immunoparticle at the active zone (small arrow). This bouton has the features of a terminal derived from the striatum or globus pallidus and is probably GABAergic²⁷. Bouton b2 is in asymmetric synaptic contact with the dendrite and has several immunoparticles lined up against the presynaptic membrane (small arrows). This terminal has many of the features of a terminal derived from the subthalamic nucleus and is probably glutamatergic $^{27}\!\!.$ Scale bar, 0.5 $\mu m.$

or $GABA_{B(1b)}$ (Ref. 31). $GABA_{B(1a)}$ and $GABA_{B(1b)}$ proteins do not associate with each other, and repeated co-ip on resulting supernatants did not detect further $GABA_{B}$ protein, suggesting that virtually all $GABA_{B(1a)}$ and $GABA_{B(1b)}$ proteins were associated with $GABA_{B(2)}$ as heterodimers. Subcellular fractionation showed that $GABA_{B}$ receptors are localized to the synaptic membrane, and $GABA_{B(1a)}$ is enriched in the postsynaptic density (PSD), whereas $GABA_{B(1b)}$ was only weakly detected.

Are GABA_B receptor subunits promiscuous? Can GABA_{B(1)} traffic to the membrane and form functional subtypes when expressed with other possible partners? Given that mGluR receptors can homodimerize³², and the similarity between GABA_B receptors and mGluRs, it is possible that an mGluR might dimerize with GABA_{B(1)}, conferring functional surface expression. Co-expression of GABA_{B(1a)} and mGluR₄ in cell lines does indeed result in increased surface expression of $GABA_{B(1a)}$ at the cell membrane, although to a lesser extent than when expressed with GABA_{B(2)} [four- to sevenfold increase with mGluR4 compared with an ~15-fold increase with $GABA_{B(2)}$] (Ref. 17). However, a heterodimer between $mGluR_4$ and GABA_{B(2)} was not formed; nor was any function (inhibition of adenylate cyclase, K⁺ channel activation) detected. These findings probably relate to the differences in GABA_B and mGluR dimer formation: GABA_B receptor dimerization is mediated via the C terminal coiled-coil, and mGluR homodimerization is mediated via N terminal cysteine disulphide bridges. The lack of functionality produced when $\text{GABA}_{B(1a)}$ is co-expressed with mGluR₄, might be the result of differential glycosylation. In addition, $\mathrm{GABA}_{\mathrm{B(2)}}$ might be required to alter the conformation of $GABA_{B(1)}$ to modulate ligand binding, or $\mathrm{GABA}_{\mathrm{B(2)}}$ might be required for correct G-protein coupling. Heterodimerization also occurs between δ - and κ-opioid receptors³³, and most recently heterooligomerization between different GPCR families [somatostatin receptor 5 (SSTR5) and dopamine D2 receptors] has become evident³⁴, and it is probable that other combinations of GPCRs will emerge. The possibility of $GABA_B$ receptor subunits interacting with other GPCRs remains an avenue for exploration.

The existence of the C terminal truncated $GABA_{B(1e)}$ splice variant is interesting, because in HEK293 cells, it can localize to the membrane in the presence or absence of $GABA_{B(2)}$ (Ref. 12). It can also heterodimerize with $\mathsf{GABA}_{\mathrm{B(2)}}$ via the extracellular domain and disrupt the normal $GABA_{B(1a)}$ – $GABA_{B(2)}$ interaction. However, $\mbox{GABA}_{B(1e)}$ does not bind the antagonist radioligand [³H]-CGP54626, activate K⁺ channels, and inhibit forskolin-stimulated cAMP formation¹². It could in fact bind other ligands, and the absence of TMDs and C terminus could disrupt G-protein coupling, and alter the conformation of the binding domain. Interestingly, a truncated mutant similar to GABA_{B(1e)} was detected by phototaffinity ligand binding using $[^{125}I]\text{-}CGP71872$ (see Ref. 1 for structure), suggesting that ligand binding is retained by C terminal truncated GABA_B receptors³⁰. The $\ensuremath{\mathsf{GABA}}_{\ensuremath{\mathsf{B}}(1e)}$ variant could play a role in regulating the availability of functional $\text{GABA}_{B(1)}\text{-}\text{GABA}_{B(2)}$ heterodimers, by competing with other $\ensuremath{\mathsf{GABA}}_{\ensuremath{\mathsf{B}(1)}}$ variants for $GABA_{B(2)}$. The ability of this truncated form of $GABA_{B(1)}$ to localize to the membrane in the absence of $GABA_{B(2)}$, occurs because in the absent part of the C terminus there is a retention sequence [RXR(R)], the absence of which allows membrane expression³⁵. This retention sequence is masked by the formation of the coiled-coil between the C termini of $\ensuremath{\mathsf{GABA}}_{B(1)}$ and $GABA_{B(2)}$ in heterodimerization, hence allowing surface expression of GABA_B receptor heterodimers.

 $\label{eq:GABA} GABA_{B(2)} \mbox{ probably plays a crucial role in the pharmacology and physiology of GABA_B receptors. A single study has shown that GABA_{B(2)} \mbox{ can inhibit}$

adenylate cyclase when expressed alone in CHO cells⁷, but other studies found that neither conventional GABA_B agonists nor antagonists bind to GABA_{B(2)} (Refs 3,4), suggesting that GABA_{B(2)} is simply a trafficking protein. This seems unlikely, given that a single transmembrane domain receptor activity modifying protein (RAMP) (Ref. 36) would equally perform the role without the need to produce a large, multiple TMD polypeptide. Furthermore, $GABA_{B(2)}$ [in addition $GABA_{B(1)}$], has a large extracellular domain incorporating a binding pocket, although the residues crucial for GABA and antagonist binding in $\ensuremath{\mathsf{GABA}}_{\ensuremath{\mathsf{B}}(1)}$ are not conserved in $GABA_{B(2)}$, perhaps suggesting that $GABA_{B(2)}$ is an orphan receptor, with an, as yet, unidentified endogenous ligand. The GABA_{B(2)} C terminal splice variants might yet prove to mediate different intracellular signalling pathways.

Pre- and postsynaptic subtypes

The most widely studied splice variants are those that were first discovered: $\text{GABA}_{B(1a)}$ and $\text{GABA}_{B(1b)}.$ The structural difference between the two proteins is the existence of complement-binding motifs (Sushi domains) in $\mathrm{GABA}_{\mathrm{B(1a)}}$ (Ref. 37), which are an integral part of the spliced-out N terminal region, and thus are absent from $\mbox{GABA}_{B(1b)}.$ These domains might target $GABA_{B(1a)}$ to specific sub-cellular sites, or might modulate GABA_{B(1a)} receptor pharmacology via interaction with extracellular proteins. Furthermore, mRNA localization studies suggest that, in some locations, GABA_{B(1a)} and GABA_{B(1b)} might represent pre- and postsynaptic GABA_B receptors, respectively³⁸. However, GABA $_{B(1a)}$ is found to be more abundant than $GABA_{B(1b)}$ in purified PSDs, suggesting that $\ensuremath{\mathsf{GABA}}_{B(1a)}$ might be predominantly postsynaptic³¹. Functional studies have provided evidence that $GABA_{B(1b)}$ couples to K^+ channels in transfected cells, via which the classical postsynaptic GABA_B receptor-mediated neurone hyperpolarization occurs³⁹, and GABA_{B(1a.2)} couples to Ca²⁺ channels (resulting in presynaptic depression of neurotransmitter release) in sympathetic neurones⁴⁰. However, both $GABA_{B(1a)}$ and $GABA_{B(1b)}$ will couple to K⁺ or Ca²⁺ channels in transfected cells^{12,40}. Other workers suggest that $GABA_{B(1b)}$ is located both preand postsynaptically using immunohistochemical studies⁴¹. The issue of $GABA_{B(1a)}$ and $GABA_{B(1b)}$ representing pre- and postsynaptic subtypes is not anatomically clear, and requires detailed immunohistochemical analysis at the electron microscope level with variant specific antibodies for clarification.

Pharmacological differentiation of recombinant $GABA_{B(1a)}$ and $GABA_{B(1b)}$ using conventional $GABA_{B}$ receptor ligands has proved difficult^{42,43}. Most recently, the prescription anticonvulsant gabapentin [Neurontin; 1-(aminomethyl)cyclohexaneacetic acid], a structural analogue of GABA, was found to selectively activate GABA_{B(1a,2)} heterodimers

coupled to inwardly rectifying K⁺ channels expressed in *Xenopus* oocytes, and not to activate $GABA_{B(1b,2)}$ or $GABA_{B(1c,2)}$ combinations¹⁴. This effect of gabapentin was not via presynaptic $GABA_B$ receptors, because monosynaptic $GABA_A$ IPSCs were not diminished in a rat hippocampal slice preparation. This data supports a postsynaptic location and function for $GABA_{B(1a,2)}$ receptors in the rat hippocampus, and is the first demonstration that molecular subtypes can be separated by pharmacological means. Recent evidence has also indicated differences in G-protein coupling between $GABA_{B(1a)}$ and $GABA_{B(1b)}$ (Ref. 13).

GABA_B receptors are sensitive to Ca²⁺

Both $GABA_{B(1)}$ and $GABA_{B(2)}$ share homology with the Ca²⁺-sensing receptor and mGluRs, both of which are sensitive to extracellular Ca2+ concentration. The effect of including 1 mM Ca2+ in [35S]-GTPyS binding assays was to decrease the EC₅₀ of GABA ten-fold⁴⁴. Ca^{2+} does not act as a ligand in its own right at $GABA_{B}$ receptors, and its effects are more prominent when added in combination with GABA, as opposed to in the presence of baclofen or GABA_B receptor antagonists. The effect is exclusive to Ca2+ as opposed to other divalent cations. It has subsequently been shown that mutation of serine 269 to alanine (S269A) in lobe 1 of the binding pocket of $GABA_{B(1a)}$ abolishes the effects of Ca²⁺ (Ref. 16). This residue is conserved in Caenorhabditis elegans and Drosophila melanogaster, whereas other serine residues (S247, S268) are not conserved. The sensitivity of $GABA_{\rm B}$ receptors to extracellular Ca2+ means that presynaptically, neurotransmitter release, and postsynaptically, neuronal excitability, can be regulated according to synaptic Ca²⁺ levels. For example, under conditions of low extracellular Ca²⁺, such as immediately following ischaemia or seizure, GABA_B receptor mechanisms might be impaired. However, 24 hrs post-ischaemia, GABA_B receptor function, as indexed by the effect of baclofen on EPSPs, appears to be normal⁴⁵.

Structural determinants of ligand binding at $\mathsf{GABA}_{\mathsf{B}}$ receptors

mGluR receptors have a large extracellular N terminal domain, which is also a feature of GABA_{B(1)} and GABA_{B(2)}. This large N terminal domain of GABA_{B(1)} specifies agonist and antagonist binding to GABA_B receptors as shown by the formation of truncated GABA_{B(1)} mutants and GABA_{B(1)}-mGluR₁ receptor chimeras³⁰. This domain has been modelled, and shares structural homology with the bacterial periplasmic leucine-binding protein (LBP), which forms two globular domains and a hinge region¹⁵. Point mutations of cysteine residues in this region caused a reduction in antagonist binding, and mutation of specific serine (S247) and glutamine (Q312) residues, lead to an increase in agonist binding affinity, and a decrease in antagonist binding affinity.

Review

Fig. 4. View of the GABA_B receptor showing the binding sites from above. Residues important for GABA and baclofen binding (serine S246, aspartic acid D471, tyrosine Y366), and Ca²⁺ sensitivity (serine S269) are shown.

The cysteine residues are probably involved in aiding stability of the binding pocket via disulphide bonds. The S247 and Q312 residues might play a role in the conformational state of the binding pocket, and could differentially affect agonist and antagonist binding by favouring the open or closed states of the binding pocket, respectively. Antagonist binding was abolished by mutation of S246, suggesting that this residue could interact directly with antagonist ligands. S246 also interacts via hydrogen bonding with the agonists GABA and baclofen, in addition to aspartate (D471), which when mutated affected the efficacy of GABA (Ref. 46). Both of these residues are present in lobe 1 of the binding pocket⁴⁶. Tyrosine Y366 mutation in lobe 2, reduced the affinity of both GABA and baclofen, and converted baclofen into a competitive antagonist⁴⁶. This evidence supports a 'venus fly-trap' model of binding, in which the two globular domains close upon agonist binding. Residues that are important for binding are shown in Fig. 4.

Developmental aspects

Brain $GABA_{B(1a)}$ and $GABA_{B(1b)}$ proteins differ in their abundance throughout the development of rats to adulthood. Initially, $GABA_{B(1a)}$ is more abundant until postnatal day 10 (P10) when $GABA_{B(1b)}$ becomes the predominant isoform⁴⁷. Both proteins decline after P10 to adult levels, when $GABA_{B(1b)}$ is twice as abundant as $GABA_{B(1a)}$ (Refs 30,31). This decline is also evident from receptor binding studies^{48,49}. The affinity of baclofen at both cloned $GABA_{B(1a)}$ and $GABA_{B(1b)}$ increases during development (P4 versus adult), with an approximately tenfold shift in IC₅₀ values for both receptors; an effect which also occurs in native $GABA_{\rm B}$ receptors⁵⁰. Receptor levels are probably highest during the most intense period of brain development, and the switch from $GABA_{B(1a)}$ to $GABA_{B(1b)}$ might reflect differences in splice machinery regulation with development. Interestingly, $\text{GABA}_{B(1a)}$ and $\text{GABA}_{B(1b)}$ have different promoter regions, which allows these

differential changes to occur¹⁸. GABA_{B(1a)} [but not GABA_{B(1b)}] contain Sushi repeat motifs, which also occur in proteins associated with the extracellular matrix (for example neurocan⁵¹), and mediate protein–protein interaction or cell recognition and adhesion. Sushi repeats are also found in *hig*, a *Drosophila* protein which is secreted from presynaptic terminals during the period of synapse development^{52,53}. Thus, Sushi repeats in GABA_{B(1a)} might be involved in directing the protein to specific locations during synapse development.

Summary and conclusions

Undoubtedly further splice variants of both $GABA_{B(1)}$ and $\mbox{GABA}_{\rm B(2)}$ will emerge. The challenge is to understand which neuronal systems they reside in, so that their functions can be elucidated. Such understanding will be aided via the development of specific and selective tools, such as antisera and knockout animals. Further work on pharmacological tools will be aided by mutagenesis studies of the binding pocket, and the effects of Sushi repeats on binding pocket conformation, which might provide the key to pharmacological differences. Also the truncated variant $\mbox{GABA}_{B(1e)}$ that lacks ant agonist binding, might benefit from structural studies of the binding pocket. Whilst the work of Ng and colleagues14 provides the first suggestion of pharmacological differences between splice variants, more specific tools are required to investigate the roles of heterodimers that contain subunits other than $GABA_{B(1a)}$. The finding that gabapentin only binds to $\ensuremath{\mathsf{GABA}}_{B(1a)}$ is convincing, however the highaffinity gabapentin exhibits for the $\alpha_0\delta$ subunit of Ca²⁺ channels is not mentioned⁵⁴, and therefore its specificity as a pharmacological tool must be questioned. Unfortunately, the low-affinity nature of the interaction between $\mbox{GABA}_{\rm B(1a)}$ and gabapentin, and the nanomolar affinity interaction between $\alpha_{2}\delta$ and gabapentin preclude the use of radioligand studies using [3H]-gabapentin.

The issue of promiscuity amongst GPCRs might yet also have further bearing on GABA_B receptor pharmacology. Interactions, such as that reported between SSTR5 and D2 receptors, must surely cloud the pharmacological effects of a given agonist. Co-expression of GABA_{B(1)} and mGluR₄ resulted in membrane expression, without GABA_B receptor function. The possibility of an interaction between GABA_{B(1)} and other GPCRs remains a distinct possibility, and the possibility of splice variants having different interactions with GPCRs introduces another level of complexity to the situation.

The scene is set for $GABA_B$ receptor biology to advance in interesting and novel directions. The study of combinations of existing variants, and the possible discovery of additional proteins in this family, will provide more information about one of the more elusive targets in neuroscience, including its functional role and future therapeutic potential.

Review

References

- $\begin{array}{l} {\rm 1} \ {\rm Kaupmann, K. \it{et al.}} (1997) \ {\rm Expression \ cloning \ of} \\ {\rm GABA_B} \ {\rm receptors \ uncovers \ similarity \ to} \\ {\rm metabotropic \ glutamate \ receptors.} \ Nature \ 368, \\ {\rm 239-246} \end{array}$
- $\begin{array}{l} 2 \ \mbox{Jones, K.A. et al.} (1998) \mbox{GABA}_{\rm B} \ \mbox{receptors} \\ \mbox{function as a heteromeric assembly of the} \\ \mbox{subunits } \mbox{GABA}_{\rm B} \mbox{R1} \ \mbox{and } \mbox{GABA}_{\rm B} \mbox{R2}. \ \ \mbox{Nature 396,} \\ \mbox{674-679} \end{array}$
- 3 Kaupmann, K. *et al.* (1998) GABA_B-receptor subtypes assemble into functional heteromeric complexes. *Nature* 396, 683–687
- 4 White, J.H. *et al.* (1998) Heterodimerization is required for the formation of a functional $GABA_B$ receptor. *Nature* 396, 679–682
- 5 Kuner, R. *et al.* (1999) Role of heteromer formation in GABAB receptor function. *Science* 283, 74–77
- 6 Ng, G.Y. *et al.* (1999) Identification of a GABA_B receptor subunit, gb2, required for functional GABA_B receptor activity. *J. Biol. Chem.* 274, 7607–7610
- 7 Martin, S.C. *et al.* (1999) Molecular identification of the human GABA_BR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABA_BR1. *Mol. Cell. Neurosci.* 13, 180–191
- 8 Bonanno, G. and Raiteri, M. (1993) Multiple GABA
 $_{\rm B}$ receptors. Trends Pharmacol. Sci. 14, 259–261
- 9 Isomoto, S. *et al.* (1998) Cloning and tissue distribution of novel splice variants of the rat GABA_B receptor. *Biochem. Biophys. Res. Commun.* 253, 10–15
- 10 Pfaff, T. *et al.* (1999) Alternative splicing generates a novel isoform of the rat GABA_BR1 receptor. *Eur. J. Neurosci.* 11, 2874–2882
- 11 Clark, J.A. $et\,al.$ (2000) Distribution of the ${\rm GABA}_{\rm B}$ receptor subunit gb2 in rat CNS. $Brain\,Res.\,860,$ 41–52
- 12 Schwartz, D.A. *et al.* (2000) Characterisation of γ -aminobutyric acid receptor GABA_{B(1e)}, a GABA_{B(1)} splice variant encoding a truncated receptor. *J. Biol. Chem.* 275, 32174–32181
- 13 Leaney, J.L. and Tinker, A. (2000) The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. *Proc. Natl. Acad. Sci. U. S. A.* 97, 5651–5656
- 14 Ng, G.Y.K. *et al.* (2001) γ-Aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant Gabapentin action. *Mol. Pharmacol.* 59, 144–152
- 15 Galvez, T. *et al.* (1999) Mutagenesis and modelling of the GABA_B receptor extracellular domain support a venus flytrap mechanism for ligand binding. *J. Biol. Chem.* 274, 13362–13369
- 16 Galvez, T. *et al.* (2000) Ca²⁺ requirement for high affinity γ -aminobutyric acid (GABA) binding at GABA_B receptors: involvement of serine 269 of the GABA_BR1 subunit. *Mol. Pharmacol.* 57, 419–426
- 17 Sullivan, R. *et al.* (2000) Coexpression of full length γ -aminobutyric acid_B (GABA_B) receptors with truncated receptors and metabotropic glutamate receptor 4 supports the GABA_B heterodimer as the functional receptor. *J. Pharmacol. Exp. Ther.* 293, 460–467
- 18 Peters, H.C. *et al.* (1998) Mapping, genomic structure, and polymorphisms of the human

 $\label{eq:GABA_BR1} \begin{array}{l} \mbox{GABA_BR1} \mbox{ receptor gene: evaluation of its} \\ \mbox{involvement in idiopathic generalised epilepsy.} \\ \mbox{Neurogenetics 2, 47-54} \end{array}$

- 19 Conn, P.J. and Pin, J.P. (1997) Pharmacology and functions of metabotropic glutamate receptors. *Annu. Rev. Pharmacol. Toxicol.* 37, 205–237
- 20 Garner, C.C. *et al.* (2000) PDZ domains in synapse assembly and signalling. *Trends Cell Biol.* 10, 274–280
- 21 Margeta-Mitrovic, M. *et al.* (1999) Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. *J. Comp. Neurol.* 405, 299–321
- 22 Billinton, A. *et al.* (2000) GABA_B receptor heterodimer-component localization in human brain. *Mol. Brain Res.* 77, 111–124
- 23 Bowery, N.G. *et al.* (1987) GABA_A and GABA_B receptor site distribution in the rat central nervous system. *Neuroscience* 20, 365–383
- 24 Chu, D.C. *et al.* (1990) Distribution and kinetics of GABA_B binding sites in rat central nervous system: a quantitative autoradiographic study. *Neuroscience* 34, 341–357
- 25 Yung, K.K.L. *et al.* (1999) Subpopulations of neurons in the rat neostriatum display GABA_BR1 receptor immunoreactivity. *Brain Res.* 830, 345–352
- 26 Ige, A.O. *et al.* (2000) Cellular and sub-cellular localization of $GABA_{B(1)}$ and $GABA_{B(2)}$ receptor proteins in the rat cerebellum. *Mol. Brain Res.* 83, 72–80
- 27 Smith, Y. *et al.* (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. *Neuroscience* 86, 353–387
- 28 Liang, F. et al. (2000) Differential expression of gamma-aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. J. Comp. Neurol. 416, 475–495
- 29 Bischoff, S. *et al.* (1999) Spatial distribution of GABA_BR1 receptor mRNA and binding sites in the rat brain. *J. Comp. Neurol.* 412, 1–16
- 30 Malitschek, B. *et al.* (1999) The N-terminal domain of γ -aminobutyric acid_B receptors is sufficient to specify agonist and antagonist binding. *Mol. Pharmacol.* 56, 448–454
- 31 Benke, D. et al. (1999) γ-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential and regional subcellular distribution. J. Biol. Chem. 274, 27323–27330
- 32 Romano, C. *et al.* (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. *J. Biol. Chem.* 271, 28612–28616
- 33 Jordan, B.A. and Devi, L.A. (1999) G-proteincoupled receptor heterodimerization modulates receptor function. *Nature* 399, 697–700
- 34 Rocheville, M. *et al.* (2000) Receptors for dopamine and somatostatin: formation of heterooligomers with enhanced functional activity. *Science* 288, 154–157
- 35 Margeta-Mitrovic, M. *et al.* (2000) A trafficking checkpoint controls GABA_B receptor heterodimerization. *Neuron* 27, 97–106
- 36 McLatchie, L.M. *et al.* (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. *Nature* 393, 333–339
- 37 Hawrot, E. et al. (1998) Demonstration of a tandem pair of complement modules in $GABA_B$ receptor 1a. FEBS Lett. 432, 103–108

- 38 Billinton, A. *et al.* (1999) GABA_B receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum. *Br. J. Pharmacol.* 126, 1387–1392
- 39 Kaupmann, K. *et al.* (1998) Human γaminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K⁺ channels. *Proc. Natl. Acad. Sci. U. S.* A. 95, 14991–14996
- 40 Filippov, A.K. *et al.* (2000) Heteromeric assembly of GABA_BR1 and GABA_BR2 receptor subunits inhibits Ca²⁺ current in sympathetic neurons. *J. Neurosci.* 20, 2867–2874
- 41 Pooorkhalkali, N. *et al.* (2000) Immunocytochemical distribution of the GABA_B receptor splice variants GABA_BR1a and R1b in the rat CNS and dorsal root ganglia. *Anat. Embryol.* 201, 1–13
- 42 Brauner-Osborne, H. and Krogsgaard-Larsen, P. (1999) Functional pharmacology of cloned heterodimeric GABA_B receptors expressed in mammalian cells. *Br. J. Pharmacol.* 128, 1370–1374
- 43 Green, A. et al. (2000) Characterisation of [³H]-CGP54626A binding to heterodimeric GABA_B receptors stably expressed in mammalian cells. Br. J. Pharmacol. 131, 1766–1774
- 44 Wise, A. et al. (1999) Calcium sensing properties of the ${\rm GABA}_{\rm B}$ receptor. Neuropharmacology 38, 1647–1656
- 45 Francis, J. *et al.* (1999) Decreased hippocampal expression, but not functionality, of GABA_B receptors after transient cerebral ischemia in rats. *J. Neurochem.* 72, 87–94
- 46 Galvez, T. *et al.* (2000) Mapping the agonistbinding site of GABA_B type 1 subunit sheds light on the activation process of GABA_B receptors. *J. Biol. Chem.* 275, 41166–41174
- 47 Fritschy, J.M. *et al.* (1999) GABA_B receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localisation. *Eur. J. Neurosci.* 11, 761–768
- 48 Turgeon, S.M. and Albin, R.L. (1993) Pharmacology, distribution, cellular localisation and development of GABA_B binding in rodent cerebellum. *Neuroscience* 55, 311–323
- 49 Turgeon, S.M. and Albin, R.L. (1994) Postnatal ontogeny of $GABA_B$ binding in rat brain. Neuroscience 62, 601–613
- 50 Malitschek, B. *et al.* (1998) Developmental changes of agonist affinity are GABA_BR1 receptor variants in rat brain. *Mol. Cell. Neurosci.* 12, 56–64
- 51 Rauch, U. *et al.* (1992) Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. *J. Biol. Chem.* 267, 19536–19547
- 52 Hoshino, M. *et al.* (1993) Hikaru genki, a CNSspecific gene identified by abnormal locomotion in *Drosophila*, encodes a novel type of protein. *Neuron* 10, 395–407
- 53 Hoshino, M. et al. (1996) Hikaru genki protein is secreted into synaptic clefts from an early stage of synapse formation in *Drosophila*. *Development* 122, 589–597
- 54 Gee, N.S. *et al.* (1996) The novel anticonvulsant drug, Gabapentin (Neurontin), binds to the $\alpha_2\delta$ subunit of a calcium channel. *J. Biol. Chem.* 271, 5768–5776