Alterations in the expression of GABA_A receptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene

Zoltan Nusser,1,* Zahida Ahmad,1 Verena Tretter,2 Karoline Fuchs,2 William Wisden,3 Werner Sieghart2 and Peter Somogyi1

1Medical Research Council Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK
2Section of Biochemical Psychiatry, University Clinic for Psychiatry, Währinger-Gurtel 18–20, A-1090 Vienna, Austria
3MRC Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK

Keywords: immunocytochemistry, inhibition, ion channel, neurotransmission, synapse

Abstract

Any given subunit of the heteromultimeric type-A γ-aminobutyric acid (GABA) GABA_A receptor may be present in several receptor subtypes expressed by individual neurons. Changes in the expression of a subunit may result in differential changes in the expression of other subunits depending on the subunit composition of the receptor subtype, leading to alterations in neuronal responsiveness to GABA. We used the targeted disruption of the α6 subunit gene to test for changes in the expression of other GABA_A receptor subunits. Immunoprecipitation and ligand binding experiments indicated that GABA_A receptors were reduced by ≈ 50% in the cerebellum of α6^{−/−} mice. Western blot experiments indicated that the α6 subunit protein completely disappeared from the cerebellum of α6^{−/−} mice, which resulted in the disappearance of the δ subunit from the plasma membrane of granule cells. The amount of β2, β3 and γ2 subunits was reduced by ≈ 50%, 20% and 40%, respectively, in the cerebellum of α6^{−/−} mice. A comparison of the reduction in the level of α1, β2, β3, γ2, or δ subunit-containing receptors in α6^{−/−} cerebellum with those observed after removal of α6-subunit-containing receptors from the cerebella of α6^{+/+} mice by immuno-affinity chromatography demonstrated the presence of a significantly higher than expected proportion of receptors containing β3 subunits in α6^{−/−} mice. The receptors containing α1, β2, β3 and γ2 subunits were present in the plasma membrane of granule cells of α6^{−/−} mice at both synaptic and extrasynaptic sites, as shown by electron microscopic immunocytochemistry. Despite the changes, the α1 subunit content of Golgi-cell-to-granule-cell synapses in α6^{−/−} animals remained unaltered, as did the frequency of α1 immunopositive synapses in the glomeruli. Furthermore, no change was apparent in the expression of the α1, β2 and γ2 subunits in Purkinje cells and interneurons of the molecular layer.

These results demonstrate that in α6^{−/−} mice, the cerebellum expresses only half of the number of GABA_A receptors present in wild-type animals. Since these animals have no gross motor deficits, synaptic integration in granule cells is apparently maintained by α1-subunit-containing receptors with an altered overall subunit composition, and/or by changes in the expression of other ligand and voltage gated channels.

Introduction

A widely used approach to study the functional role of a protein in the CNS is to generate animals in which the expression of the protein is selectively disrupted. Although temporally and spatially restricted genetic deletions have already been developed (Kuhn et al., 1995; Tsien et al., 1996; Jones et al., 1997), it is often a general assumption that the expression of only a single gene is altered, without any change in the amount or in the precise subcellular location of other gene products.

Inhibition in the brain is mainly mediated through type-A γ-aminobutyric acid (GABA) GABA_A receptors, which are ligand-gated anion channels formed of pentameric assemblies of subunits. Although, the possible permutations of the 16 subunits to form pentameric channels is hundreds of thousands, it is generally accepted that only a limited number of receptor subtypes exists in the CNS (Sieghart, 1995; Stephenson, 1995; McKernan & Whiting, 1996; Mohler et al., 1996; Barnard et al., 1998). Cerebellar granule cells provide an excellent opportunity to study how the disruption of a gene for a single GABA_A receptor subunit influences the amount and the precise subcellular location of other subunits, as these cells express six GABA_A receptor subunits abundantly (Laurie et al., 1992; Persohn et al., 1992; Wisden et al., 1996). These subunits form GABA_A receptor subtypes with distinct subunit compositions and distinct kinetic and pharmacological properties (Puia et al., 1994; Saxena & Macdonald, 1994, 1996; Kaneda et al., 1995; McKernan & Whiting, 1996; Tia et al., 1996b; Jechlinger et al., 1998). In addition, the microcircuit of the cerebellum is relatively simple; pre- and postsynaptic elements can easily be identified on ultrastructural grounds. For example, most granule cells receive GABAergic innerva-
tion from Golgi cells and glutamatergic input from mossy fibre terminals only on their distal dendrites. Mossy fibre and Golgi cell terminals are easily distinguishable in electron microscopic preparations (Palay & Chan-Palay, 1974).

We have previously described the generation of a transgenic mouse line (Δα6lacZ; α6 →–) with a disrupted gene encoding the α6 subunit of the GABA_δ receptor (Jones et al., 1997). In addition to the lack of the α6 subunit, we found that the δ subunit protein was greatly reduced in the cerebellum of α6 →– animals. These results suggested that the α6 subunit protein is necessary for oligomerization and for surface expression of the δ subunit. In spite of the disappearance of the α6-subunit-containing receptors, no cerebellar-associated motor deficits have been observed in α6 →– mice (Homanics et al., 1997; Jones et al., 1997; Korpi et al., 1999). Therefore in the present study we investigated whether there were compensatory changes in the expression of the remaining GABA_δ receptor subtypes and/or changes in their subcellular distribution. Quantitative immunoblot and immunoprecipitation analysis of GABA_δ receptor subunits together with light- and electron microscopic immunocytochemistry were applied in control and α6 →– mouse cerebella with antibodies selective for GABA_δ receptor subunits (α1, α6, β2, β3, γ2 and δ) abundantly expressed in cerebellar granule cells.

Materials and methods

Preparation of animals and tissue for immunocytochemistry

Twelve adult female mice (C57/BL-6) and 12 adult female α6 →–mice (strain 129/SvJXCS7BL/6 J; Jones et al., 1997) were anaesthetized with Sagatal (pentobarbitone sodium, 220 mg/kg i.p.) and perfused through the heart first with 0.9% saline for 1 min, then with fixatives containing either 4% paraformaldehyde dissolved in 0.1 M phosphate buffer (PB; pH 7.4); or 4% paraformaldehyde, 0.05% glutaraldehyde and 0.2% picric acid in PB for 7–20 min. After perfusion the brains were removed; blocks from the vermis of the cerebellum were then cut out and washed in several changes of PB.

Fixatives containing either 4% paraformaldehyde dissolved in 0.1 M phosphate buffer (PB; pH 7.4) as the blocking solution for 1 h. The sections were then incubated in the solution of the primary antibodies made up in TBS containing 1% NGS and 0.05% Triton X-100 overnight. After washing, the sections were incubated in either biotinylated goat anti-rabbit IgG or biotinylated goat antimouse IgG (diluted 1 : 50 in TBS containing 1% NGS; Vector Lab. Peterborough, UK) for 2 h. Then the sections were incubated in avidin biotinylated horseradish peroxidase complex (diluted 1 : 100 in TBS) for 1.5 h before the peroxidase enzyme reaction was visualized with 3,3'-diaminobenzidine tetrahydrochloride as chromogen and H₂O₂ as oxidant. After that, the sections were routinely processed for light- or electron microscopic examination.

Pre-embedding immunohistochemistry

Normal goat serum (NGS) was used in 50 mM Tris-HCl containing 0.9% NaCl (TBS; pH 7.4) as the blocking solution for 1 h. The sections were then incubated in the solution of the primary antibodies made up in TBS containing 1% NGS and 0.05% Triton X-100 overnight. After washing, the sections were incubated in either biotinylated goat anti-rabbit IgG or biotinylated goat antimouse IgG (diluted 1 : 50 in TBS containing 1% NGS; Vector Lab. Peterborough, UK) for 2 h. Then the sections were incubated in avidin biotinylated horseradish peroxidase complex (diluted 1 : 100 in TBS) for 1.5 h before the peroxidase enzyme reaction was visualized with 3,3'-diaminobenzidine tetrahydrochloride as chromogen and H₂O₂ as oxidant. After that, the sections were routinely processed for light- or electron microscopic examination.

Freeze substitution and embedding in Lowicryl resin

The same procedure was used as described earlier (Baude et al., 1993; Nusser et al., 1995a). Briefly, after perfusion, blocks of tissue were washed in PB; this was followed by Vibratome sectioning (500 µm thickness) and washing with PB overnight. The sections were placed into 1 M sucrose solution in PB for 2 h for cryoprotection before they were slammed (Reichert MM80 E) to a polished copper bedding immunogold method, demonstrating that the labelling observed on the plasma membrane is due to the anti-receptor antibodies.

Postembedding immunocytochemistry

Postembedding immunocytochemistry on slam-frozen, freeze-substituted and Lowicryl-embedded tissue was carried out on ~80-nm ultrathin sections of the vermis as described earlier (Nusser et al., 1995a, b). The sections were incubated on drops of blocking solution (TBS containing 20% NGS) for 30 min, followed by an incubation
Changes in GABA$_A$ receptor subunits in α6−/− cerebellum

1687

on drops of primary antibodies (made up in TBS containing 2% or 5% NHS) overnight at room temperature. After incubation in primary antibody, the sections were washed and transferred to drops of goat antimouse or goat antirabbit IgG coupled to 10 nm gold particles (diluted 1:100 in TBS containing 2% or 5% NHS, Nanoprobes Inc) for 2 h. Following several washes, the sections were contrasted with saturated aqueous uranyl acetate followed by lead citrate.

Quantification of immunopositive synapses and immunoparticles for the α1 subunit of the GABA$_A$ receptor

A similar method was used as described earlier (Nusser et al., 1995b). Briefly, four to five glomeruli were chosen from each animal on the basis of a clear demarcation by granule cell bodies, capillaries or the grid bars in the well-preserved strip of the ultrathin sections. The images of glomeruli were recorded on a CCD camera at a primary magnification of 4600 for subsequent area measurement at a magnification of 10 000 using NIH Image 1.59 software (Bethesda, USA). The border of glomeruli were delineated by granule cell and glial cell bodies and myelinated axons which were not included in the measured area, but the area covered by mossy fibre terminals was included. The glomeruli were visually scanned in the electron microscope at a magnification of 70 000, and every synapse between a Golgi cell terminal and a granule cell dendrite which was immunopositive for the α1 subunit was recorded at 75 000 × final magnification. A synapse was considered immunopositive if it contained at least two immunoparticles over the membrane specialization. Special care was taken to exclude particles associated with the extrasynaptic plasma membrane. For comparisons, the frequency of immunopositive synapses was calculated for a glomerular area of 100 µm2. The immunoparticles were counted at a magnification of 75 000 in the anatomically defined synaptic junction. If the lateral displacement of a gold particle was more than 25 nm from the membrane, that particle was not considered to be specifically associated with the synapse.

Quantitative immunoblot analysis

Membranes from three α6+/+ and three α6−/− cerebella were prepared, and equal amounts (15–20 µg) of protein per slot were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the same 10% polyacrylamide gel (Jechlinger et al., 1998). Proteins were blotted to poly vinylidene difluoride membranes and subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the same 10% polyacrylamide gel (Jechlinger et al., 1998). Membranes from three 6/−/− mice using a deoxycholate buffer (0.5% deoxycholate, 0.05% phosphatidylcholine, 10 mM Tris-chloride, pH 8.3, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 500 µM benzamidine, 200 µg/mL bacitracin, and 300 µM phenylmethylsulphonylfluoride (PMSF) additionally containing 5% dry milk powder were added and incubation was continued for 2 h at 4 °C. The precipitate was centrifuged for 10 min at 10 000 g and the pellet was washed twice with 500 µL IP-high buffer (0.5% Triton X-100, 50 mM Tris-chloride, pH 8.3, 600 mM NaCl, 1 mM EDTA, 500 µM benzamidine, 200 µg/mL bacitracin, and 300 µM PMSF) and once with 500 µL IP-low buffer.

Diazepam-sensitive or -insensitive [3H]Ro 15–4513 binding sites were determined as described previously (Jechlinger et al., 1998). For [3H]muscimol binding assays the precipitated receptors were suspended in 1 mL of a solution containing 0.1% Triton X-100, 50 mM Tris-citrate buffer, pH 7.1, and 20 mM [3H]muscimol (17.1 Ci/mmol, DuPont NEN) in the absence or presence of 10 µM GABA, and were incubated for 60 min at 4 °C (Jechlinger et al., 1998). The suspensions were then filtered through Whatman GF/B filters and the filters were washed twice with 3.5 mL of a 50 mM Tris-citrate buffer (pH 7.1).

Total [3H]muscimol binding sites were determined after precipitating all GABA$_A$ receptors present in the extract with an antibody mixture containing 8 µg B1(350–404), plus 8 µg B2(351–407), plus 10 µg B3(1–13) antibody, using the same assay as described above (Jechlinger et al., 1998).

The relative precipitation efficiency of the individual antibodies was determined using recombinant GABA$_A$ receptors containing the respective subunit by measuring [3H]muscimol binding sites precipitated by the antibody as a percentage of the total [3H]muscimol binding sites present in the extract. The factor obtained was then used to correct for 100% precipitation of the antibody. Data obtained after this correction were identical with data produced by measuring the percentage reduction in total [3H]muscimol binding sites after complete elimination of receptors containing the respective subunit by affinity chromatography (Jechlinger et al., 1998).

Affinity chromatography of cerebellar GABA$_A$ receptors

Deoxycholate extracts from wild-type mouse cerebella were cycled three times through an affinity column containing immobilized α6(317–371) antibody. In the elution of this column α6-subunit-containing receptors were no longer detectable by immunoblotting. Binding of [3H]muscimol was determined in the original extract and in the column efflux after immunoprecipitation with antibodies to one of the following subunits: α1, β2, β3, γ2 or δ. The percentage reduction in immunoprecipitated binding from the column efflux corresponds to the percentage of the respective subunit that is associated with α6 subunits in wild-type cerebellum.

Results

Immunoreactivity for the α6 subunit

The distribution of immunoreactivity for the α6 subunit in mouse CNS was identical to that in rat brain (Thompson et al., 1992; Gao & Fritschy, 1995; Nusser et al., 1996). Granule cells in the cerebellum (Figs 1 and 2) and in the dorsal cochlear nuclei of control mice showed intense staining with either an N- (R545XY-) or a C-terminal (P24) antibody. The staining of granule cells completely disappeared in all α6−/− animals (n = 11) with both antibodies (Figs 1 and 2; see Jones et al., 1997). In agreement with the immunocytochemical
Fig. 1. Light microscopic demonstration of changes in the expression of GABA_A receptor subunits in the cerebella of α6−/− mice. Pre-embedding immunoperoxidase reactions with antibodies against the α1, α6, β2, β3, γ2 and δ subunits. Immunoreactivity for only the α1, β2 and γ2 subunits is present in the molecular layer (ml), originating from the staining of Purkinje cells and interneurons (arrows). The staining intensity of the molecular layer remains unchanged in α6−/− mice. Immunoreactivity for the α6 subunit completely disappears in the granule cell layer (gcl) of α6−/− mice. There is a great reduction in the immunoreactivity for the β2 and δ subunits and a moderate decrease in the staining for the α1, β3 and γ2 subunits in the granule cell layer of α6−/− mice. Immunopositive glomeruli are present for the α1, β2, β3 and γ2 subunits, but not for the δ subunit. (α6 reactivity in α6−/− mouse: differential interference contrast image; Pcl: Purkinje cell layer; all micrographs at same magnification.)

results, the 57-kDa protein on immunoblots was absent in cerebella of α6−/− mice (Fig. 3).

It has recently been reported (Gutierrez et al., 1996) that the α6 subunit of the GABA_A receptor is not exclusively present in granule cells of the cerebellum and the cochlear nuclei (Laurie et al., 1992; Persohn et al., 1992; Varecka et al., 1994; Nusser et al., 1996), but it is also found in the superior colliculi, olfactory bulb, retina and spinal cord. Gutierrez et al. (1996) detected immunoreactivity for the α6 subunit with an antibody against the N-terminal part (1–13) of the subunit. Using another antibody against the N-terminal sequence (1–15) of the α6 subunit (R54XV, Thompson et al., 1992), we obtained a similar staining of the olfactory bulb to that reported by Gutierrez et al. (1996). However, the labelling of the olfactory bulb could not be detected with the C-terminal antibody. In addition, immunostaining of the olfactory bulb with our N-terminal antibody was identical in wild-type and in α6−/− mice. We could not detect any specific immunostaining of the superior colliculi using either of the antibodies in control or in α6−/− mice. These results suggest that the staining of the olfactory bulb and the superior colliculi is due to crossreactivity of the N-terminal antibodies with an unknown protein(s), rather than representing α6 subunits. Immunoreactivity for the α6 subunit was not tested in the spinal cord or the retina in this study.

Immunoreactivity for the δ subunit in control and α6−/− mice

The great reduction of immunoreactivity for the δ subunit in the granule cell layer of α6−/− cerebella, as described in Jones et al. (1997), was confirmed using a δ-subunit-selective antibody from a different rabbit (Fig. 1; n = 6 pairs of animals). Immunostaining of the glomeruli could not be detected in α6−/− mice at the light microscopic level (Fig. 2), suggesting that the remaining δ subunits in granule cells are not present in the dendritic plasma membrane. The remaining immunoreactivity for the δ subunit in α6−/− cerebella could not be assigned to subcellular compartments using electron microscopy because of its very low level of expression. Quantitative immunoblot analysis of cerebellar membranes demonstrated ≈ 77% reduction of the δ subunit in α6−/− mice (Fig. 3 and Table 1).
In the cerebellar cortex of control mice, immunostaining for the β2 subunit was most intense in the granule cell layer (Fig. 1), demonstrating a high level of expression in granule cells. Strong reactivity was confined to the glomeruli, whereas granule cell bodies were only weakly outlined by the reaction end-product. The glomeruli appeared as dark rings with a pale centre, representing the strongly reactive granule cell dendrites at the periphery and the immunonegative mossy fibre terminals at the centre (Fig. 2). Purkinje cells and interneurons of the molecular layer were also immunopositive (Fig. 1). There was a great reduction in the staining intensity in the granule cell layer of α6–/– mice (Fig. 1; n = 4 pairs of animals), although the intensity of immunostaining for the β2 subunit in the molecular layer was approximately the same in control and α6–/– animals. Quantitative immunoblot analyses revealed that in α6–/– cerebella the expression of β2 subunits was reduced to 47% of the wild-type level (Fig. 3, Table 1). In spite of the large reduction in the β2 subunit, immunopositive glomeruli could be detected in the granule cell layer of α6–/– mice (Fig. 2), indicating that the remaining β2 subunits were present on the surface of granule cells.

Immunostaining for the β3 subunit was restricted to the granule cell layer (Fig. 1) in the cerebellar cortex of control mice. At high magnification, the staining of the granule cell layer resembled that obtained for the β2 subunit. Strongly immunopositive glomeruli, which appeared as dark rings with a pale centre, dominated over the weakly reactive granule cell bodies (Fig. 2). In α6–/– mice, a reduction in the staining of the granule cell layer was apparent. The remaining immunopositive glomeruli had a similar appearance to that observed in control mice (Fig. 2; n = 3 pairs of animals), but were weaker. On average, ∼21% of the β3 subunit protein disappeared in α6–/– cerebella (Fig. 3, Table 1).

To confirm that the remaining β subunits in α6–/– mice were indeed in the plasma membrane of granule cells, the β2/3 subunits were localized with an electron microscopic immunogold procedure. Gold particles for the β2/3 subunits were enriched in Golgi-cell-to-granule-cell synapses, and were also present at a lower density on the extrasynaptic somatic and dendritic membranes of control mice (Fig. 4), similar to that described in rat cerebellum (Nusser et al., 1995b). In α6–/– mice, a similar pattern of labelling was observed. Some Golgi synapses contained several gold particles (Fig. 4), whereas others had either zero or only a few particles, indicating a variability...
interneurons of the molecular layer showed prominent labelling for the γ2 subunit, which appeared unchanged in α6−/− mice (Fig. 1). However, the staining of the granule cell layer was reduced in α6−/− mice when compared with control animals (Fig. 1; n = 4 pairs of mice). Immunoblot analysis revealed a 41% reduction of the γ2 subunit protein in α6−/− cerebella (Fig. 3, Table 1). Similar to the β2 and β3 subunits, but unlike the δ subunit, strongly immunopositive glomeruli were detectable in the granule cell layer of α6−/− mice (Fig. 2), suggesting that the γ2 subunit is also present in the plasma membrane of granule cells.

The α1 subunit is not significantly up-regulated in GABAergic Golgi synapses of α6−/− granule cells

Distribution of immunostaining for the α1 subunit was similar in the cerebellar cortex of control mice to that observed in the rat, cat and monkey (Somogyi et al., 1989, 1996; Zimprich et al., 1991; Fritschy et al., 1992; Fritschy & Mohler, 1995). In the molecular layer, cell bodies of interneurons and the dendrites of Purkinje cells and interneurons were immunostained. In the granule cell layer, strongly positive glomeruli dominated over weakly stained granule cell bodies (Figs 1 and 2). In two out of four α6−/− mice immunohistochemically tested for the α1 subunit, a reduction in the immunostaining of the granule cell layer was observed (Fig. 1), in the other two animals, no obvious change in the staining was detected. Quantitative Western blot analysis performed on membrane extracts from α6+/+ and α6−/− mice revealed a significant reduction of 27% in the 51-kDa immunoreactive band representing the α1 subunit (Fig. 3, Table 1).

Although the amount of α1 subunit slightly decreased in the whole cerebellum of α6−/− mice, the number of α1-subunit-containing receptors could have increased in Golgi-cell-to-granule-cell synapses, compensating for the loss of α6-subunit-containing synaptic receptors. Such a reorganization of extrasynaptic and synaptic receptors could have accounted for the fact that no obvious motor deficits were observed in α6−/− mice (Homanics et al., 1997; Jones et al., 1997; Korpi et al., 1999). We have tested the above hypothesis by quantitative immunogold localization of the α1 subunit in Golgi-cell-to-granule-cell synapses. Immunogold labelling for the α1 subunit in cerebellar granule cells of control mice was similar to that in the rat and cat (Nusser et al., 1995b, 1996). Gold particles were enriched in synaptic junctions made by Golgi cell terminals and granule cell dendrites and were also present at a lower density on the extrasynaptic somatic and dendritic membranes (Fig. 5). The number of immunoparticles per immunopositive Golgi synapse was not significantly higher in α6−/− than in control mice (n = 3 pairs of animals, Fig. 6).

A potential mechanism maintaining inhibitory function with synapses that lost the α6-subunit-containing receptors is an increase in the number of synapses equipped only with α1-subunit-containing receptors on granule cells. However, the frequency of α1 subunit immunopositive synapses in the glomeruli of control and α6−/− animals was not different (Fig. 6), assuming that the distribution of the size of synaptic areas was unaltered in α6−/− mice. The lack of change in immunopositive synapses demonstrates the absence of up-regulation in the synaptic pool of the α1-subunit-containing receptors. Thus, the ≈ 26% reduction of the α1 subunit protein very probably results in a lower density of the extrasynaptic α1 subunits, provided most of the reduction took place on granule cells.

Overall reduction of the GABA_A receptors in α6−/− cerebellum

In order to estimate the number of GABA_A receptors present in mouse cerebellum, GABA_A receptors were extracted from cerebella...
Table 1. Quantification of subunit proteins in cerebellar membranes by Western blot analysis

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>(+/+ mouse)</th>
<th>(−/− mouse)</th>
<th>Reduction (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1</td>
<td>100.0 ± 5.8 (17)</td>
<td>73.5 ± 6.7 (17)</td>
<td>26.5</td>
<td>< 0.01</td>
</tr>
<tr>
<td>β2</td>
<td>100.0 ± 7.6 (12)</td>
<td>46.6 ± 5.8 (12)</td>
<td>53.4</td>
<td>< 0.01</td>
</tr>
<tr>
<td>β3</td>
<td>100.0 ± 7.1 (15)</td>
<td>78.6 ± 6.2 (15)</td>
<td>21.2</td>
<td>< 0.05</td>
</tr>
<tr>
<td>γ2</td>
<td>100.0 ± 8.4 (9)</td>
<td>58.9 ± 7.0 (9)</td>
<td>41.1</td>
<td>< 0.01</td>
</tr>
<tr>
<td>δ</td>
<td>100.0 ± 10.5 (6)</td>
<td>22.7 ± 4.3 (6)</td>
<td>77.3</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Table 2. Quantification of GABA_A receptor subtypes by immunoprecipitation with subunit-specific antibodies and [3H]muscimol binding

<table>
<thead>
<tr>
<th>Antibodies to subunit</th>
<th>α6+/+ mice</th>
<th>α6−/− mice</th>
<th>α6+/+ mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage of total receptors</td>
<td>Reduction (%)</td>
<td>Reduction by α6 column (%)</td>
</tr>
<tr>
<td>β1 + β2 + β3</td>
<td>100.0 ± 4.8 (18)</td>
<td>49.4 ± 3.7 (18)</td>
<td>55.7 ± 1.2 (3)</td>
</tr>
<tr>
<td>α1</td>
<td>74.8 ± 6.0 (3)</td>
<td>26.0 ± 6.7 (3)</td>
<td>32.3 ± 2.5 (6)</td>
</tr>
<tr>
<td>α6</td>
<td>55.7 ± 1.2 (3)</td>
<td>98.2 ± 0.5 (3)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>β2</td>
<td>90.0 ± 4.2 (3)</td>
<td>53.6 ± 3.3 (3)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>β3</td>
<td>36.4 ± 1.6 (12)</td>
<td>28.9 ± 9.8 (12)</td>
<td>51.3 ± 4.8 (3)</td>
</tr>
<tr>
<td>γ2</td>
<td>68.3 ± 5.6 (3)</td>
<td>36.7 ± 1.4 (3)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>δ</td>
<td>26.7 ± 1.5 (3)</td>
<td>89.6 ± 4.0 (3)</td>
<td>45.0 ± 4.2 (3)</td>
</tr>
</tbody>
</table>

GABA_A receptors were extracted from α6+/+ and α6−/− cerebella and then precipitated by subunit-specific antibodies. Receptor subtypes containing the respective subunit were quantified using [3H]muscimol binding. In the second column, the proportion of receptors containing a given subunit were expressed as a percentage of the total receptors obtained after precipitation with a mixture of three antibodies directed against each of the three β subunits (100% value). Data were calculated after normalization for precipitation efficacy. The percentage reduction in these receptors in α6−/− animals (fourth column) was calculated from a direct comparison of immunoprecipitation data from α6+/+ and α6−/− cerebellar extracts used in the same individual experiments. In all cases, there was no significant difference in the efficiency of solubilization and [3H]muscimol binding. Receptors containing α1, β2, β3, γ2 and δ subunits were quantified in the original extract and in the efflux of the column by immunoblotting. Receptors containing α1, β2, β3, γ2 and δ subunits were no longer detectable by immunoblotting in the efflux of the column by immunoprecipitation with subunit-specific antibodies and [3H]muscimol binding. The difference between the two values represents the percentage of subunits associated with α6 subunits in wild-type cerebellum. The data indicated that α1, β2, γ2 or δ subunits were no longer detectable by immunoblotting in the efflux of the column by immunoprecipitation with subunit-specific antibodies and [3H]muscimol binding. The difference between the two values represents the percentage of subunits associated with α6 subunits in wild-type cerebellum. The data indicated that α1, β2, γ2 or δ subunits were reduced in the efflux to an extent similar to that observed in α6−/− cerebella. The reduction of β3 subunits by the α6 subunit immuno-affinity column, however, was significantly larger than that observed in α6−/− cerebella (Table 2).

Discussion

The restricted expression of the α6 subunit of the GABA_A receptor to granule cells of the cerebellum and the cochlear nuclei (Laurie et al., 1992; Turner et al., 1993; Varecka et al., 1994; Nusser et al., 1996) suggested that the disruption of the α6 subunit gene may result in dysfunctions of cerebellum-associated behaviours such as movement co-ordination, motor learning and maintenance of orientation and balance. However, no such cerebellar-associated motor deficits were observed in α6−/− mice (Homanics et al., 1997; Jones et al., 1997; Korpi et al., 1999), indicating that GABA_A receptors in α6−/− cerebellar granule cells could satisfy the tested functional requirements. There are at least four possibilities regarding changes in the quality and the quantity of GABA_A receptors in granule cells of α6−/− mice. Firstly, the expression of new GABA_A receptor subunit genes (subunits without of control and α6−/− mice. After solubilization, 68% of the [3H]Ro 15–4513 or [3H]muscimol binding sites present in the membranes could be recovered in the extract as determined by immunoprecipitation with a combination of β1, β2 and β3 antibodies (Jechlinger et al., 1998). This corresponds to 93% of the binding sites identified in the extract and in the 100 000 g membrane pellet after extraction. Since there was no significant difference in the efficiency of solubilization by detergent between [3H]muscimol binding sites and diazepam-sensitive or -insensitive [3H]Ro 15–4513 binding sites, it can be concluded that the extracted receptors were representative of the entire functional GABA_A receptor population.

Quantitative immunoprecipitation of GABA_A receptors in cerebellar extracts using subunit-specific antibodies revealed that 75, 56, 90, 36, 68 and 27% of all GABA_A receptors in the extract from control cerebella contained α1, α6, β2, β3, γ2 and δ subunits, respectively (Table 2). The proportional change in the amount of different subunits in α6−/− cerebella as determined with immunoprecipitation was very similar to that obtained with the immunoblotting experiments (cf. Tables 1 and 2). Interestingly, the number of GABA_A receptors precipitated by the mixture of β1, β2 and β3 antibodies in extracts from α6−/− cerebella (range 0.9–1.7 pmol/mg protein) was only 51% of that precipitated by these antibodies in control cerebella (range 1.9–3.4 pmol/mg protein), showing a 49% decrease in the total cerebellar GABA_A receptors in α6−/− mice.

Comparison of receptor subunit composition in α6−/− and wild-type cerebellum

In order to compare the amount of different subunits in α6−/− cerebellum with that expected to be present in wild-type cerebellum in the absence of α6-subunit-containing receptors, deoxocholate extracts from the cerebellum of α6+/+ mice were passed through an immuno-affinity chromatography column containing immobilized antibodies to the α6 subunit (residues 317–371). In the efflux of this column α6-subunit-containing receptors were no longer detectable by immunoblotting. Receptors containing α1, β2, β3, γ2 and δ subunits were quantified in the original extract and in the efflux of the column by immunoprecipitation with subunit-specific antibodies and [3H]muscimol binding. The difference between the two values represents the percentage of subunits associated with α6 subunits in wild-type cerebellum. The data indicated that α1, β2, γ2 or δ subunits were reduced in the efflux to an extent similar to that observed in α6−/− cerebella. The reduction of β3 subunits by the α6 subunit immuno-affinity column, however, was significantly larger than that observed in α6−/− cerebella (Table 2).
Changes in GABA_A receptor subunits in α6^{−/−}cerebellum

α6^{−/−} mice show a significant expression in control granule cells, e.g. α2, α3, α4 or α5) may be turned on to compensate for the loss of the α6 subunit. However, quantitative immunoblot analysis revealed that the expression of the α2 and α4 subunits was not elevated in the cerebellum of α6^{−/−} mice (data not shown). Secondly, receptors that do not contain the α6 subunit (α1β2γ2) may be upregulated in GABAergic Golgi synapses, resulting in a qualitative, but not necessarily a quantitative change in the receptor content of these synapses. Thirdly, the loss of α6-subunit-containing receptors may not be compensated by expression of other receptors, resulting in a large overall reduction in the amount of GABA_A receptors in the cerebellum of α6^{−/−} animals. Fourthly, the subunit composition of the remaining receptors in the cerebellum may change resulting in functional compensation for the loss of α6-subunit-containing receptors.

Fig. 4. Electron micrographs showing immunoreactivity for the β2/3 subunits in cerebellar glomeruli of control (A and B; +/+) and α6^{−/−} mice (C and D; −/−). Postembedding immunogold (10 nm particles) reactions on Lowicryl resin-embedded tissue. Although, there is a great reduction of the β subunit content of granule cells, the remaining β subunits are present on the surface of granule cells at both synaptic and extrasynaptic sites. In control animals (A and B), symmetrical synapses (arrows) between Golgi cell terminals (Gt) and granule cell dendrites (d) show an enrichment of gold particles. The number of immunoparticles per synapse is variable, but similar to that observed in control mice. Asymmetrical synapses (double open triangles) made by mossy fibre terminals (mt) with granule cell dendrites are immunonegative. Scale bars: 0.2 μm.

Fig. 5. Electron microscopic demonstration of immunoreactivity for the α1 subunit in the granule cell layer of control (A and B; +/+) and α6^{−/−} mice (C and D; −/−). Postembedding immunogold (10 nm particles) reactions on Lowicryl resin-embedded tissue. Gold particles are concentrated in some synapses (arrows) made by Golgi cell terminals (Gt) with granule cell dendrites (d). Immunonegative Golgi synapses (open arrows) are also present in both control (A and B) and α6^{−/−} (C and D) mice. Extrasynaptic receptors can also be seen (arrowheads). The number of particles per synapse is variable, with a similar range in both control and α6^{−/−} animals (also see Fig. 6). Scale bars, 0.2 μm.
Overall reduction in the amount of GABA_A receptors in α6^{−/−} cerebellum

All comparisons of immunoprecipitation data are based on the assumption that the subunit composition of receptors does not affect their solubilization differentially. We are not aware of any evidence contradicting this assumption for GABA_A receptors. The determination of the abundance of GABA_A receptor subtypes in mouse cerebellum in the present study shows that = 55% of all GABA_A receptors contain the α6 subunit. A slightly smaller proportion was found in the rat cerebellum (Jechlinger et al., 1998). The finding that GABA_A receptors in α6^{−/−} mice were reduced by 49% compared with control mice, indicates that there is no significant compensation for the loss of α6-subunit-containing receptors by an up-regulation of other GABA_A receptors in the cerebellum. Light microscopic immunocytochemistry supported the conclusion of an overall reduction in GABA_A receptors in granule cells. However, a functional up-regulation of receptors through the redistribution of receptor pools in the plasma membrane, for example by increasing synaptic receptor numbers as demonstrated for hippocampal granule cells (Nusser et al., 1998a), could take place even at reduced overall receptor level. The testing of the synaptic receptor pool by quantitative immunogold localization at the electron microscopic level showed no significant up-regulation in the frequency of immunopositive Golgi cell synapses or in their α1 subunit content. These results, in agreement with previous findings (Jones et al., 1997; Makela et al., 1997), demonstrate that after the targeted disruption of the α6 subunit gene, the number of GABA_A receptor subtypes is greatly reduced, which results in a large decrease in the overall amount of GABA_A receptors in granule cells.

The reduction in the α1, β2, γ2 and δ subunits correlates well with the expected reduction from the complete loss of α6 receptors in α6^{−/−} mouse cerebellum

Quantitative immunoblot analysis showed a significant reduction of the α1, β2, β3, γ2 and δ subunits in cerebellar membranes of α6^{−/−} mice. The data for the α1 and δ subunits confirm previous results (Jones et al., 1997). In order to investigate a possible change in the composition of GABA_A receptors in the cerebellum of α6^{−/−} mice, the reductions in different subunits were compared with that expected to remain after the complete removal of α6-subunit-containing receptors from wild-type cerebellum by α6 subunit-specific immunoadfinity chromatography.

The α1 subunit is present in = 75% of all cerebellar GABA_A receptors, as shown in this and previous studies (Khan et al., 1993, 1996; Pollard et al., 1995). A 32% reduction of α1 subunits observed in these experiments agrees reasonably with the 26% reduction of α1 subunits in α6^{−/−} cerebella, and supports the conclusion that there was no significant compensatory upregulation of receptors containing α1 subunits in the cerebellum of α6^{−/−} mice. The same holds true for β2- or γ2-subunit-containing receptors. After complete removal of α6-subunit-containing receptors from α6^{+/+} cerebella by immunoadfinity chromatography, β2 or γ2-subunit-containing receptors were reduced by 51 and 45%, respectively. These values were not significantly different from the 54 or 37% reduction of β2 or γ2-subunit-containing receptors observed in α6^{−/−} cerebella.

These results are unexpected, and could be interpreted as indicating that the expression of more α1βγ2 receptors instead of α6βγ2 receptors was unnecessary for maintaining the function of cerebellar granule cells. Nevertheless, the results do not exclude the possibility that changes in granule cells were masked by different changes in other cerebellar cell types. However, the light microscopic immunocytochemical results did not reveal large changes in the immunoreactivity of cells outside the granule cell layer.

After complete removal of α6-subunit-containing receptors from α6^{+/+} cerebella, δ-subunit-containing receptors were almost completely eliminated, indicating that the δ subunits are exclusively associated with α6 subunits in the cerebellum of the mouse (Jones et al., 1997). Immunoprecipitation experiments in α6^{−/−} cerebella indicated a reduction of the δ subunit by 90%. This percentage is close to that remaining after removal of α6-subunit-containing recep-
tors from α6 +/+ cerebellum. In Western blot experiments, however, δ subunits were reduced by only 77% in α6 –/– cerebella, confirming previous results (Jones et al., 1997). The remaining δ subunits may represent an incompletely assembled pool of subunits in intracellular compartments of α6 –/– cerebella.

The altered abundance of the β3 subunit in α6 –/– cerebellum suggests changes in receptor subunit composition

After complete precipitation of α6-subunit-containing receptors from α6 +/+ cerebella, β3-subunit-containing receptors were reduced by 63%, compared with only a 29% reduction of these receptors in α6 –/– cerebella. The unexpectedly high abundance of β3 subunits in α6 –/– mouse cerebellum may be the consequence of a selective sparing of the β3 subunit expression. The remaining β3 subunits may form receptors predominantly with the α1 and β2 subunits in granule cells, but with an altered subunit composition.

Some of the GABA A receptor subunits (α1, β2, γ2 and δ) were reduced as expected, whereas the β3 subunit appears to be less affected in the cerebellum of α6 –/– mice. It is therefore possible that the composition of GABA A receptors in the cerebellum changed as a consequence of the missing α6-subunit-containing receptors, leading to functional compensation for the elimination of α6-subunit-containing receptors. The main difference between receptors containing the β2 or β3 subunits in a heterologous expression system is in their regulation by cAMP-dependent protein kinase (PKA). Phosphorylation of the β3 subunit led to an enhancement of the α6-subunit-containing receptors, whereas the β2 subunit was not phosphorylated by PKA (McDonald et al., 1998). Therefore, the increased proportion of β3 subunits in α6 –/– cerebella would render a larger proportion of GABA A receptors more susceptible to PKA-mediated functional up-regulation.

Because the cerebellum contains several parallel and/or sequentially connected GABAergic neuronal types, and our biochemical analysis was carried out on whole cerebellar extracts, the sites of change in receptor composition have not been determined. The immunocytochemical results indicate no major changes in the abundance of receptors in the molecular cell layer, but the deep cerebellar nuclei have not been analysed. It is also possible that changes in voltage- and/or other ligand-gated ion channels, such as the N-methyl-D-aspartate (NMDA) receptor, compensate for this large reduction in the amount and complexity of GABA A receptors. Indeed, following the selective elimination of Golgi cells, which release GABA onto the granule cells, NMDA-receptor-mediated excitation is down-regulated, possibly as a compensatory adaptation for the lost inhibitory influence (Watanabe et al., 1998).

Reduction in the number of GABA A receptor subtypes in granule cells of α6 –/– mice

Although cerebellar granule cells receive GABAergic input only from a single cell type, the Golgi cell, two distinct types of GABA A receptor mediate inhibition (tonic and phasic) have recently been described in adult rats (Brickley et al., 1996; Wall & Usowicz, 1997; Rossi & Hamann, 1998). At least six GABA A receptor subtypes are expressed by granule cells (Caruncho & Costa, 1994; Khan et al., 1994, 1996; Quirk et al., 1994; Pollard et al., 1995; Wisden et al., 1996; Jechlinger et al., 1998) with dissimilar kinetic and pharmacological properties (Pritchett et al., 1989; Verdoorn et al., 1990; Angelotti & Macdonald, 1993; Puia et al., 1994; Saxena & Macdonald, 1994, 1996; Brickley et al., 1995, 1996; Kaneda et al., 1995; Tia et al., 1996a,b). We recently proposed (Nusser et al., 1998a) that a differential cell surface distribution of distinct GABA A receptor subtypes, together with their dissimilar functional properties, may underlie the different forms of inhibition observed in granule cells. Namely, since δ-subunit-containing receptors (α6β2γ2δ and α6δ2γ2δ) are only present extrasynaptically (Nusser et al., 1998b), have high affinity for GABA (Saxena & Macdonald, 1996) and do not desensitize upon prolonged presence of agonist (Saxena & Macdonald, 1994), they are well suited to mediate tonic inhibition which originates from the persistent activation of GABA A receptors (Bickley et al., 1996). In contrast, the synaptic γ2-subunit-containing receptors are more likely to underlie the phasic inhibition, because they have a much lower affinity for GABA and have a much faster desensitization rate than the δ-subunit-containing receptors (Saxena & Macdonald, 1994, 1996; Tia et al., 1996b). Although γ2-subunit-containing receptors are clearly concentrated in the synaptic junction, they are also present in the extrasynaptic membrane (Somogyi et al., 1996; Nusser et al., 1998b). In addition, the extrasynaptic receptors may also prolong the decay of inhibitory postsynaptic currents (IPSCs) due to their delayed activation by transmitter spilling over from synaptic junctions (Rossi et al., 1998). It is therefore possible that the lack of the α6 and δ subunits from the surface of α6 –/– granule cells results in a loss or great reduction of tonic inhibition, as well as a reduction in phasic inhibition in granule cells. Due to the loss of synaptic α6-subunit-containing receptors (α6β2γ2δ and α6δ2γ2δγ2) and the possible changes in the subunit composition of the remaining receptors, the amplitude and kinetics of inhibitory synaptic currents may also be altered. Although the roles of the two different forms of inhibition are not understood for cerebellar function, it is likely that tonic inhibition may regulate passive membrane properties of granule cells (e.g. membrane time constant and input resistance) to influence the time window for synaptic integration (Gabbiani et al., 1994; Haussner & Clark, 1997), whereas phasic inhibition may modify the output pattern of granule cells (Haussner & Clark, 1997). This hypothesis remains to be tested in α6 –/– animals.

Acknowledgements

The authors are grateful to Mr Paul Jays for photographic assistance, to Mr L. Marton for help with the quantification of synapses and to Alison Jones for expert help with transgenic mice. This study was supported by the Medical Research Council (UK), a European Commission Shared Cost RTD Programme Grant (No. Bi04CT96–0585) and a grant of the Austrian Science Foundation (SFB06/10). We are grateful to Dr Jean-Marc Fritschy for kindly providing the γ2 and β2/3-subunit-selective antibodies.

Abbreviations

GABA, γ-aminobutyric acid; GABA A, γ-aminobutyric acid type A receptor; NGS, normal goat serum; NMDA, N-methyl-D-aspartate; PB, 0.1 m phosphate buffer; PKA, protein kinase A; TBS, 50 mM Tris-HCl containing 0.9% NaCl.

References

J. Neurosci., 14, 961–971.

Changes in GABA_A receptor subunits in α6−/− cerebellum

