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a b s t r a c t

The Ornstein–Uhlenbeck (O–U) model has been successfully applied to describe the response accuracy
and response time in 2-alternative choice tasks. This paper analyses properties and performance of
variants of the O–U model with absorbing and reflecting boundary conditions that limit the range of
possible values of the integration variable. The paper focuses on choice tasks with pre-determined
response time. The type of boundary and the growth/decay parameter of the O–Umodel jointly determine
how the choice is influenced by the sensory input presented at different times throughout the trial. It is
shown that the O–U models with two types of boundary are closely related and can achieve the same
performance under certain parameter values. The value of the growth/decay parameter that maximizes
the accuracy of the model has been identified. It is shown that when the boundaries are introduced, the
O–U model may achieve higher accuracy than the diffusion model. This suggests that given the limited
range of the firing rates of integrator neurons, the neural decision circuits could achieve higher accuracy
employing leaky rather than linear integration in certain tasks. We also propose experiments that could
distinguish between different models of choice in tasks with pre-determined response time.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Making choices on the basis of sensory information is one of the
fundamental cognitive functions of intelligent animals. The studies
of decision processes in simple 2-alternative forced choice (2AFC)
tasks usually employ one of two paradigms. In the time controlled
(TC) paradigm, subjects are required to respond immediately af-
ter a cue presented at an experimenter-determined time (Dosher,
1976, 1984; Swensson, 1972; Yellott, 1971). Alternatively, in the
information controlled (IC) paradigm, subjects are allowed to re-
spond freely whenever they feel confident in their choice (Luce,
1986).
Several mathematical models have been developed over the

last half century to describe the behavioural performance as well
as the underlying decision process in 2AFC tasks (Busemeyer
& Townsend, 1992, 1993; Laming, 1968; Ratcliff, 1978; Ratcliff,
Van Zandt, & McKoon, 1999; Stone, 1960; Usher & McClelland,
2001; Vickers, 1970). These sequential sampling models share a
common characteristic that the sensory representation of stimuli is
accumulated over time to form a choice. Neural correlates of such
an accumulation process have been observed in certain cortical
areas (Gold & Shadlen, 2002; Kim & Shadlen, 1999; Schall, 2001;
Shadlen & Newsome, 2001), which gives further support to the
sequential sampling framework.
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In the IC paradigm, the decision process depends on the
amount of accumulated evidence, i.e., a choice is made as soon
as sufficient evidence in favour of one alternative is accumulated.
In the TC paradigm, since the time of response is chosen by the
experimenter, a choice can be made by simply asking, at the time
of response, whether the accumulated evidence supporting the
first alternative exceeds that of the second. However, according
to such a model for the TC paradigm the accumulated evidence
could take arbitrarily large or small values, which could lead to
unrealistic predictions (Meyer, Irwin, Osman, & Kounios, 1988).
One approach to overcome this problem is to assume that the
accumulated evidence is bounded within a certain range (Feller,
1968; Ratcliff, 1988). In our previous study (Zhang, Bogacz, &
Holmes, 2009), we compared the effects of two possible boundary
mechanisms, reflecting and absorbing boundaries, on a typical
sequential sampling model - the diffusion model (Ratcliff, 1978;
Ratcliff & McKoon, 2008), and we showed that both boundary
types lead to similar performance in the TC paradigm and produce
similar fits to experimental data.
This paper extends our previous findings by investigating the

dynamics and performance of the Ornstein–Uhlenbeck (O–U)
model (Busemeyer & Diederich, 2002; Busemeyer & Townsend,
1992, 1993) with two types of boundaries in the TC paradigm.
The O–U model has been successfully applied to a variety of
tasks (Diederich, 1995, 1997; Smith, 1995, 2000) and can approxi-
mate the same computation carried out by other biologically in-
spired models (e.g., Usher & McClelland, 2001) in 2AFC tasks.
We show that the O–U model with different types of boundaries
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could achieve the same performance under certain parameter val-
ues, though the boundaries introduce differential weighting of ev-
idence. We also show that when the boundaries are introduced,
the accuracy of the O–U model is higher than that of the diffusion
model.
The paper is organized as follows. Section 2 reviews the decision

problem and the O–U model as well as boundary mechanisms.
Section 3 compares the properties of the O–U models with two
types of boundaries. Section 4 investigates the performance of the
model and identifies the parameter values thatmaximize accuracy.
Section 5 discusses experimental predictions of the O–U model
with boundaries and Section 6 summarizes the implications of
our study. Mathematical details are provided in the Appendices.
Preliminary results of this study were presented in an abstract
form (Zhang & Bogacz, 2006).

2. Sequential sampling models and boundary mechanisms

2.1. Neurobiology of decision

Numerous in vivo experiments have been performed to
investigate the neural correlates of decision processes in monkeys.
In a well-known motion discrimination task used in this line
of research, monkeys were instructed to fixate on a random
moving dots stimulus presentedwithin a circular aperture (Britten,
Shadlen, Newsome, & Movshon, 1993). A proportion of dots move
coherently to the left or to the right and themonkey had to respond
to the coherent motion direction by making a saccade to a left or
right target.
Neural recording data from the motion discrimination task

indicate that the decision process involves several cortical regions.
First, the neural activity in sensory areas (e.g., the middle temporal
(MT) area) has been shown to closely correlate with the statistics
of the stimulus (i.e., the motion coherence) (Britten, Newsome,
Shadlen, Celebrini, & Movshon, 1996; Britten, Shadlen, Newsome,
& Movshon, 1992; Britten et al., 1993). Second, neurons in the
lateral interparietal (LIP) area that directly receive inputs from
area MT gradually build up or attenuate their activity within a
trial (Roitman & Shadlen, 2002; Shadlen & Newsome, 2001). In
particular, neural activity in LIP correlates with the direction of eye
movements (i.e., the decision) at the timeof response. These results
suggest that LIP neurons accumulate sensory evidence from area
MT to form a choice.
The experimental results indicate that the accumulation of sen-

sory evidence may be a general decision mechanism manifested
in different brain regions or species (Gold & Shadlen, 2007; Schall,
2001). Based on this assumption, in this paper we investigate deci-
sion problems in 2AFC tasks formalized as follows (Gold & Shadlen,
2001, 2002). Two populations of sensory neurons generate con-
tinuous noisy evidence Y1(t) and Y2(t) supporting the two alter-
natives Y1 and Y2 at time t . We assume that Y1(t) and Y2(t) are
normally distributedwith constantmeansµ1 andµ2 (µ1, µ2 > 0).
The goal of the decision process is to identify which sensory popu-
lation has the higher mean based on Y1(t) and Y2(t).

2.2. The Ornstein–Uhlenbeck model

The Ornstein–Uhlenbeck (O–U) model (Uhlenbeck & Ornstein,
1930) is a stochastic process that was first introduced into
psychology by Busemeyer and Townsend (1993). Since then many
researchers have applied the O–U model to a variety of studies
to account for response accuracy and response time in choice
tasks (Busemeyer &Diederich, 2002; Diederich, 1995, 1997; Heath,
1992; Smith, 1995, 1998), and the model has also been extended
to multi-alternative tasks (McMillan & Holmes, 2006; Usher &
McClelland, 2001).
In the O–U model for 2AFC tasks an imperfect integrator
accumulates the difference of sensory evidence supporting two
alternatives (Y1(t) − Y2(t)). Let X(t) denote the value of the
integrator state at time t . The O–U model is described by the
following stochastic differential equation:
dX(t) = (λX(t)+ µ) dt + σdW , (1)
where µ and σ denote the mean and standard deviation of the
normally distributed quantity Y1(t) − Y2(t) (i.e., µ = µ1 − µ2),
dX(t) denotes the increment of evidence over a small unit of
time dt , dW (t) is Gaussian white noise with mean zero and unit
variance, and λ is a growth/decay parameter. According to the
decision problem proposed above, the sign of µ determines the
correct choice. More specifically, µ > 0 implies that the first
alternative Y1 is correct (µ1 > µ2), and µ < 0 implies that the
second alternative Y2 is correct (µ1 < µ2). For simplicity, we
hereafter set µ > 0 in this paper. The magnitude of µ and σ
determine the task difficulty, i.e., for |µ| close to zero or large σ ,
it is difficult to distinguish which alternative (Y1 or Y2) has higher
mean. On each trial, the decision process starts at t = 0 with a
starting point X0 = X(0) = 0. In the IC paradigm, the integrator
continuously accumulates evidence according to Eq. (1) until X(t)
reaches a decision threshold. In the TC paradigm, the decision
process terminates at a pre-determined time tc , and the choice is
made on the basis of the final integrator state X(tc), i.e., the model
selects Y1 if X(tc) > 0, or Y2 if X(tc) < 0. Throughout this paper we
focus on the TC paradigm and quantify themodel’s performance by
the error rate P(tc), which is the probability of making an incorrect
choice when the response is required at time tc . The expression
for the error rate of the O–U model is given by Busemeyer and
Townsend (1993):

P(tc) = Φ

(
−
µ

σ

√
2
(
eλtc − 1

)
λ
(
eλtc + 1

)) , (2)

whereΦ(u) =
∫ u

−∞

1
√
2π
e−

v2
2 dv. (3)

It is worth noting that the parameter λ affects the linear drift
rate λX(t) + µ, and as a result the O–U model with nonzero λ
exhibits differentialweighting of evidencewithin a trial. That is, for
λ > 0 the evidence presented early in a trial has a larger influence
on the decision (a primacy effect), and for λ < 0 the choice
mainly depends on the evidence presented later in a trial (a recency
effect) (Wallsten & Barton, 1982). An explicit proof of this property
is available in Busemeyer and Townsend (1993). In particular, for
λ = 0, the weighting of evidence is independent of the time
of its presentation and the O–U model simplifies to a diffusion
model (Ratcliff, 1978; Ratcliff & McKoon, 2008). In Section 3 we
will investigate how the primacy and recency effects of the O–U
model are affected by boundaries.

2.3. Boundary mechanisms

In earlier versions of sequential sampling models, the value
of the integrator states was unconstrained. As mentioned in
the Introduction, this type of model allows the integrator state
to have arbitrarily large or small values. This is, however, a
simplification. First, it is not realistic that any biological system
could represent an infinite amount of evidence. Second, when
accumulated evidence is not limited, a sequential sampling model
maynot fit experimental data (Ratcliff, 1988). Oneway to eliminate
the above problems is to transform the integrator state through
a nonlinear activation function1 (Brown et al., 2005; Brown &
Holmes, 2001; Usher & McClelland, 2001). Another approach, the

1 In fact, the O–U process can be obtained from a nonlinear transformation of the
Wiener process (Cox & Miller, 1965, p. 229; Smith, in press).
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Fig. 1. Examples of trajectories of the O–U models with absorbing boundary
(dashed line), reflecting boundary (solid line), and without boundary (dotted line).
Models were simulated with µ = 0.5 s−1 , λ = 1, σ = 1 s−1 , dt = 0.001 s, and
boundaries b = 1.

focus of this paper, is to apply boundary conditions to the existing
linear models, which provides an approximation of the nonlinear
activation functions (Usher & McClelland, 2001).
The first boundary mechanism is the absorbing boundary

(Feller, 1968), which was originally applied to choice tasks in
which IC and TC paradigmswere intermixed (i.e. the subjects were
instructed to respond freely on some trials, or after a timed cue on
other trials) (Diederich & Busemeyer, 2003; Ratcliff, 1988; Ratcliff
& Rouder, 2000). Once the integrator hits an absorbing boundary,
the accumulation process terminates and the integrator state is
maintained afterwards. To introduce absorbing boundaries to the
O–Umodel,we assume two symmetric boundaries at±b, and then,
the O–U model with absorbing boundaries can be described by:
X(t + dt) = b, if X(t)+ dX(t) ≥ b or X(t) = b,
X(t + dt) = −b, if X(t)+ dX(t) ≤ −b

or X(t) = −b,
X(t + dt) = X(t)+ dX(t), otherwise,

(4)

where dX(t) is given by Eq. (1). In the TC paradigm, the choice
is determined by which boundary the integrator hits first, or if
neither boundary is reached before tc , the choice is determined by
the same rule as the one used for the model without boundaries
(see Section 2.2).
The second boundary mechanism is the reflecting boundary

(Zhang et al., 2009) (also see Diederich, 1995; Diederich & Buse-
meyer, 2003; Ratcliff & Smith, 2004), which only restricts the
amount of accumulated evidence that can be represented by the
integrator. In other words, the value of the integrator state can-
not exceed a reflecting boundary, but it may continue to change
(i.e., move back) due to noise, as specified by:{X(t + dt) = b, if X(t)+ dX(t) ≥ b,
X(t + dt) = −b, if X(t)+ dX(t) ≤ −b,
X(t + dt) = X(t)+ dx(t), otherwise.

(5)

Hereafter we refer to the O–U model with absorbing and
reflecting boundaries as absorbing O–U and reflecting O–Umodels,
and the model without a boundary as the unbounded O–U model.
Fig. 1 shows sample paths of integrator states in the O–U models
with both types of boundaries, comparedwith the unboundedO–U
model. For the absorbing O–Umodel, the choice can be determined
early in a trial (after 0.35 s in Fig. 1). For the reflecting O–U model,
the preferred choice may change throughout the decision process
until the end of the trial.
In a previous study, we compared the boundary effects on one
sequential sampling model — the diffusion model (Zhang et al.,
2009). We showed that the diffusion model with two types of
boundaries produce exactly the same error rate for any given tc .
Moreover, the absorbing and reflecting boundaries yield a primacy
and recency effect, respectively. In the next section we will show
that similar properties also hold for the bounded O–U model.

2.4. Optimal decision making theory

Due to evolutionary pressure, neural systems are likely to adapt
to their environment and optimize their behaviour to achieve de-
sired goals (Anderson, 1990). This assumption has been invoked
in the study of perceptual decision making, and it has been pro-
posed that the brainmay implement statistically optimal decision-
making procedures (Bogacz, 2007, 2009; Bogacz et al., 2006;Gold&
Shadlen, 2001, 2002, 2007). In the sequential sampling framework,
an optimal decision procedure would achieve the lowest error rate
and shortest response time compared with all possible procedures
to integrate sensory evidence2. For the TC paradigm, the optimal
procedure is the one that yields the lowest error rate for any given
response time.
Recall that the decision problem proposed in Section 2.1 is to

identify which of the two alternatives has higher mean inputs.
This problem can be converted to the problem of hypothesis
testing in statistics (Ghosh, 1970; Lehmann, 1959), and the optimal
procedure satisfying the above criterion is provided by theNeyman
and Pearson (NP) procedure. It has been proved that among
all hypothesis tests, the NP procedure minimizes the overall
probability of accepting the false hypothesis for fixed sample size
(Neyman & Pearson, 1933), and therefore it minimizes the error
rate for any response time. Bogacz et al. (2006) showed that as the
time intervals between samples approach zero, the NP procedure
becomes equivalent to the diffusion model. Hence, the diffusion
model is the optimal decision procedure in the TC paradigm in the
Neyman–Pearson sense. Since the O–U model with λ = 0 can be
reduced to the diffusion model, the O–U model also maximizes
accuracy when λ = 0. In Section 4, we will show that this is no
longer the case for the bounded O–U model.

3. Properties of bounded O–U models

3.1. Dynamics of bounded O–U models

The dynamics of the absorbing and reflecting O–U models can
be illustrated by the probability density p(X, t) of the integrator
states X(t) at time t , which is calculated in Appendix A by solving
theKolmogorov backward equationwith boundary conditions. The
density function p(X, t) of bounded O–Umodels is aweighted sum
of an infinite series:

p(X, t) =
∞∑
j=0

e−ξjt Kj(X)φj(X0), (6)

where Kj(X) is defined in Eq. (A.16). ξj are the non-negative eigen-
values from Eqs. (A.27) and (A.30), and φj(X0) are the associated
eigenfunctions defined in Eqs. (A.26) and (A.29) as a function of
the starting point X0. The eigenvalues and eigenfunctions depend
on the type of boundaries. There exist infinitely many eigenvalues
that can be found numerically, and an approximation of p(X, t) can

2 The optimality criterion for the IC paradigm is to consider which decision
strategy yields the fastest response time for any given error rate. The procedure that
satisfies this criterion is provided by the Sequential Probability Ratio Test (Barnard,
1946; Wald, 1947).
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Fig. 2. Probability densities of integrator states in the bounded O–Umodels. State values of the integrator are shown on horizontal axes. Densities are shown for parameters
µ = σ = 1 s−1 , and b = 1. For each panel, different curves show densities at different time instants from 0.1 s to 2 s. The density functions p(X, t) are calculated in
Appendix A with eigenvalues shown in Table 1. All solutions start at X0 = 0. (a) The absorbing O–U model with λ = 1. (b) The absorbing O–U model with λ = −1. (c) The
reflecting O–U model with λ = 1. (d) The reflecting O–U model with λ = −1.
be obtained by taking a partial sumof finite terms. Themore eigen-
values included in Eq. (6), the more accurate the approximation of
the density function p(X, t).
Fig. 2 compares the probability densities of the absorbing

and reflecting O–U models at several time instants. During the
first hundred milliseconds, all densities are close to a Gaussian
distribution with mean close to the starting point X0 and shifted
towards the upper boundaries as time grows. For large t , the
density of the absorbing O–U model collapses to zero, while the
reflecting O–U model has nonzero equilibrium distributions, with
a small proportion to the left of the origin, corresponding to the
probability of making an incorrect choice (for µ > 0).
The difference between the stationary densities can be ex-

plained from the expression of p(X, t). For any ξj > 0, the time-
dependent coefficient e−ξjt in Eq. (6) monotonically decreases and
converges to zero as t grows. Table 1 shows the first ten eigen-
values ξj. For the absorbing O–U model all eigenvalues are posi-
tive, hence the density of the absorbing O–U model converges to
p(X, t) = 0 as t → ∞. For the reflecting O–U model, one of the
eigenvalues is equal to zero ξ0 = 0, hence the density p(X, t) con-
verges to K0(X)φ0(X0) as t →∞. It is also interesting to note that
the eigenvalues ξj (j > 0) of the absorbing and reflecting O–Umod-
els are symmetric by flipping the sign of λ.

3.2. Primacy and recency effects

Previous studies showed that differential weighting of evidence
(i.e., the primacy and recency effects) can be introduced by either
the parameter λ of the unbounded O–U model (Busemeyer &
Townsend, 1993) or two types of boundaries (Zhang et al., 2009).
Here we investigate the primacy and recency effects in the O–U
Table 1
Eigenvalues of the bounded O–U models with positive and negative λ. The
eigenvalues are numerically obtained by seeking the roots of the Eqs. (A.27) and
(A.30). The parameters of the bounded O–U models are µ = σ = 1 s−1 , and b = 1.

j Absorbing Reflecting
λ = −1 λ = 1 λ = −1 λ = 1

0 – – 0 0
1 1.26 2.26 2.26 1.26
2 5.08 6.08 6.08 5.08
3 11.27 12.27 12.27 11.27
4 19.90 20.90 20.90 19.90
5 31.01 32.01 32.01 31.01
6 44.58 45.58 45.58 44.58
7 60.62 61.62 61.62 60.62
8 79.12 80.12 80.12 79.12
9 100.10 101.10 101.10 100.10
10 123.54 124.54 124.54 123.54

models by applying the reverse correlation method. We simulate
the unbounded, absorbing, and reflecting O–U models, each with
positive and negative λ values. For each model considered, the
time course of sensory evidence is recorded and averaged only
from trials resulting in correct choices. The averaged evidence
represents how themodelweights noisy inputs during the decision
process. For µ > 0, the model makes correct decisions if the
integrated evidence is positive at the end of a trial. Hence a larger
averaged input from correct trials indicates that the sensory input
at that time point has, on average, a large influence on the final
choice, and a smaller averaged input indicates that the choice
depends to a lesser extent on the input at that time.
The simulation results are shown in Fig. 3. First, positive

and negative λ values introduce primacy (Fig. 3a) and recency
(Fig. 3d) effects to the unbounded O–U model, which is consistent
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Fig. 3. Primacy and recency effects for the bounded and unbounded O–U models with positive λ (top panels) and negative λ (bottom panels). In each panel the O–U model
is simulated for 10,000 trials. For all correct trials the input to the O–U model at every time step is recorded and averaged. The data points show the mean of the inputs and
the error bars show the standard error. In all panels the parameter values are µ = 0.71 s−1 , σ = 1 s−1 , b = 0.47, tc = 1s. (a) The unbounded O–U model with λ = 5.5.
(b) The absorbing O–U model with λ = 5.5. (c) The reflecting O–U model with λ = 5.5. (d) The unbounded O–U model with λ = −5.5. (e) The absorbing O–U model with
λ = −5.5. (f) The reflecting O–U model with λ = −5.5.
with theoretical predictions by Busemeyer and Townsend (1993).
Second, the absorbing O–U model exhibits a strong primacy effect
for λ > 0 (Fig. 3b), but no clear effect was observed for λ < 0
(Fig. 3e). By contrast, a positive λ value does not produce a clear
effect in the reflecting O–U model (Fig. 3c), but the reflecting O–U
model has a strong recency effect for λ < 0 (Fig. 3f).
Therefore, the primacy/recency effect in the bounded O–U

models is jointly determined by two independent elements:
the value of λ and the type of the boundary. Given different
combinations of the two elements, the primacy/recency effect in
the bounded O–U model is maintained if λ and the boundary
provide the same effects (Figs. 3b and 3f). On the other hand, the
joint effect is weakened if λ and the boundary introduces opposite
effects, as shown in Figs. 3c and 3e. By appropriately setting the
two parameters the joint primacy/recency effects introduced by
the boundary and λ could cancel each other. In Section 4.2 we
show that this condition leads to the optimal performance of the
bounded O–U model.

4. Performance of bounded O–U models

4.1. The error rate of bounded O–U models

For the reflecting O–Umodel, since the density of the integrator
p(X, t) has unit mass (see Fig. 2), the error rate is equal to the
proportion of p(X, t) that lies on the ‘error’ side of the origin, i.e., if
µ > 0, the error rate of the reflecting O–Umodel can be calculated
by integrating the density p(X, t) from−b to 0:

P(ref)(tc) =
∫ 0

−b
p(X, tc) dX, (7)
where ‘‘ref’’ stands for reflecting boundary. Therefore by estimat-
ing p(X, t) numerically we can obtain an approximation of the er-
ror rate. For the absorbing O–U model, such a calculation is not
available as p(X, t) converges to zero as t grows.
Now let us compare the error rates of the O–U models with

two types of boundaries. For the unbounded O–U model, the error
rate remains the same if we flip the sign of λ (see Eq. (2)). Fig. 4
shows the error rates of the bounded O–U models with positive
and negative λ at different tc . The result suggests that there exists
an error rate symmetry in the bounded O–U models. That is, by
flipping the sign of λ, the absorbing and reflecting O–U models
produce the same error rate for any tc . This relationship can be
represented as:
P(abs)(tc,−λ) = P(ref)(tc, λ), (8)
where P(abs)(.) and P(ref)(.) denote the error rates of the absorbing
and reflecting O–U models with parameters specified in the
brackets. We have not succeeded in giving a complete proof of
Eq. (8) since an analytical expression for the error rate of the
bounded O–U model is not available. However we are able to
prove a special case of Eq. (8) when tc → ∞, which is given in
Appendix B.
In summary, the absorbing and reflecting O–U models with

opposite signs of λ produce the same accuracy, and thus they
would provide the same fit to data from experiments in the TC
paradigm.

4.2. The optimal parameter

In the TC paradigm, the unbounded O–U model achieves the
minimum error rate when λ = 0 (i.e., when it reduces to the
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Fig. 4. The error rate of the bounded O–U models at different tc . The models were
simulatedwith parameters:µ = σ = 1 s−1 and b = 1. Every data point is averaged
from 100,000 trials. The reflecting O–U model (solid line) is simulated with λ = 2,
and the absorbing O–U model (dashed line) is simulated with λ = −2.

diffusionmodel) (Bogacz et al., 2006 and also see Section 2.4). After
introducing boundaries, an intriguing question arises: is λ = 0 still
the optimal parameter value for the bounded O–U models? If not,
what is the optimal λ value that yields the lowest error rate for the
bounded O–U models?
To answer this question, we simulate the bounded O–Umodels

with different parameter values. The error rates of the bounded
O–U models with different values of λ, b and tc are shown as
contour plots in Fig. 5. The result suggests that the bounded O–U
models with λ = 0 are not always optimal, but the optimal
value of λ depends on the values of other parameter such as
b and tc . First, if b is relatively small (b < 0.2 in Fig. 5), the
value of λ does not significantly affect the performance of the
bounded O–Umodels in all panels of Fig. 5. This result is expected,
since if the interval between the two boundaries is tiny, the
integrator state is restricted to be around X0, and in this case the
noise would dominate the choice process. Therefore, the models
produce large error rates (around 40%) in this region. Second, if
b is sufficiently large (b > 2 in Fig. 5), the integrator hardly
reaches any of the boundaries before tc used in the simulation, and
hence the bounded O–U models are approximately equivalent to
the unbounded O–U model, in which λ = 0 gives the lowest error
rate for any tc .
Except for these two extreme parameter regions, the error rate

is affected by the values of λ, b and tc . In general, given b and tc ,
for the absorbing O–U model, λ < 0 gives the best performance,
Fig. 5. The contour plots of the error rates of the bounded O–U models with different parameter values. The bounded O–U models are simulated with the following
parameters: λ in [−3,3] with step 0.1, b in [0.1,3] with step 0.1, µ = σ = 1 s−1 , and tc = 0.5s, 1 s, and 4 s. For each possible combination of the parameter values, the
absorbing and reflecting O–U models are simulated for 10,000 trials to obtain the mean error rates. The error rates are then grouped by the value of tc and the type of
boundaries, and illustrated as contour plots. The horizontal axes show the value of b, and the vertical axes show the value of λ. Each contour plot has 20 contour levels and
the colormaps are the same for all panels. Left panels show the error rates of the absorbing O–U model, and right panels show the error rates of the reflecting O–U model.
The panels in each row show the plots that have the same value of tc , as indicated on the vertical axes.
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Fig. 6. Optimal performance of the bounded O–Umodels. (a) The optimal λ values of reflecting and absorbing O–Umodels for different tc varying from 0.5s to 10s (in steps
of 0.01 s). For each tc , the absorbing and reflecting O–U models are simulated with parameters µ = σ = 1 s−1 , b = 1, and λ varying from −100 to 100. For each value
of λ the model is simulated for 10,000 trials, and the λ that yields minimum error rate is recorded as the optimal value at tc . (b) Error rates of the reflecting O–U model at
different tc . The model is simulated with the same parameters (µ, σ , b) as in panel (a). Dotted line shows the error rate of the model with λ = 3. Dashed line shows the error
rate of the model with λ = 0 (i.e., the diffusion model). Solid line shows the error rate of the model with optimal λ values from panel (a). Each data point is averaged over
10,000 trials.
while for the reflecting O–U model, λ > 0 yields the minimum
error rate. This optimal value of λ is consistent with the joint
primacy/recency effects of the bounded O–U models proposed
in Section 3.2. Recall that the recency effect introduced by the
reflecting boundary can be weakened by setting λ > 0, and vice
versa. To achieve the optimal performance, the primacy/recency
effects of the boundaries and λ should be balanced and cancelled,
so that the sensory evidence from different time points contribute
equally to the choice, as in the optimal NP decision procedure
(i.e., no primacy/recency effects). The simulation results in Fig. 5
accord with this hypothesis.
Fig. 5 also shows that for fixed b, the absolute value of λ

that yields the optimal performance increases when extending
tc , i.e., the optimal λ increases for the reflecting O–U model and
decreases for the absorbing O–U model. To find the optimal λ
values, we simulate the bounded O–U model under different tc .
For each tc , we numerically found the value of λ that yields the
minimum error rate, and the results are shown in Fig. 6a. For the
reflecting O–U model, the optimal λ increases as tc increases, with
decreasing slope. The optimal λ for the absorbing O–U model is
a mirror of that for the reflecting O–U model, which decreases as
tc grows. This result further supports the error rate symmetry of
the bounded O–U models (Eq. (8)), because if a specific λ value is
optimal for the reflecting O–Umodel,−λwould be optimal for the
absorbing O–U model.
To validate the optimality of λ values in Fig. 6a, we simulated

the reflecting O–U model with different tc . For each tc , λ is set to
be the optimal value shown in Fig. 6a. For comparison, we also
simulated the reflecting O–U model with fixed λ values λ = 3
and λ = 0. The error rates of the three models are illustrated in
Fig. 6b. The bounded O–U model with optimal λ values achieves
lower error rates than the model with other constant λ.
We also show in Appendix C that the error rates of the bounded

O–U model with optimal λ do not decrease to 0 as t → ∞. Thus
the model is consistent with an observation that the error rates
of human subjects in the TC paradigm do not decrease to 0 as t
increases on difficult trials (Usher & McClelland, 2001).
5. Experimental predictions

The two types of boundaries may characterize different
subjects’ behaviour in psychological experiments. The absorbing
boundary can account for the behaviour in which the choice is
made before the end of the trial and never changed. The reflecting
boundary may imply that the subjects hesitate between the two
choices evenwhen sufficient evidence is available, andmay change
their preference later in the trial. Nevertheless, due to the error rate
symmetry, it is not trivial to differentiate between the two types
of boundary on the basis of experimental data from simple 2AFC
tasks, as the absorbing and reflecting O–U models (with opposite
sign of λ) would always produce the same fit.
To investigate primacy and recency effects in the TC paradigm,

stimuli could be used that differ in the information they contain at
different times after stimulus onset (Huk & Shadlen, 2005; Usher
& McClelland, 2001). For example, in the motion discrimination
task (see Section 2.1) the coherence of motion can be increased
for a short period on each trial (Usher, Tsetsos, & Teodorescu,
2009). The primacy effect would be present, if such an increase in
coherence had the highest influence on accuracy when occurring
after stimulus onset. The recency effect would be present, if the
increase had the highest influence before the response. Note
however, that such an experiment cannot differentiate between
the absorbing O–U model with negative λ and the reflecting O–U
model with positive λ, because neither model predicts strong
primacy or recency effects. Our analysis suggests that these two
models maximize accuracy, and given evolutionary pressure for
accuracy of decisions, we predict that one of these two models
should describe choices in the TC paradigm with long tc .
We propose that the absorbing O–Umodel with negative λ and

the reflecting O–U model with positive λ could be distinguished
in a motion discrimination experiment in which the coherence is
manipulated in a similar way to that recently proposed by Zhou,
Wong-Lin, and Holmes (2009). In particular, the coherence could
be increased by a strong pulse c1 for an interval of length t1,
and then decreased by a smaller amount c2 < c1 for a longer
interval t2 > t1 (Fig. 7a). If the parameters of the perturbation
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Fig. 7. The decision task with pulse perturbation. (a) The drift rate with pulse perturbation. The parameter values are: µ = 2 s−1 , c1 = 5 s−1 , c2 = 1.19 s−1 , t0 = 310 ms,
t1 = 150 ms, t2 = 630 ms. (b) The error rate of the absorbing and reflecting O–Umodels, comparedwith that of the unbounded diffusionmodel. Themodels were simulated
with parameter values: b = 0.7, λ = ±5 (−5 for the absorbing O–U model and 5 for the reflecting O–U model), c = 2 s−1 , and tc = 1.8 s. Light grey bars show the error
rate of the models with constant drift rate µ = 2 s−1 , and dark grey bars show the error rate of the models with time-varying drift rate from (a). The error bars show the
standard error from 10,000 trials.
satisfied c1t1 = c2t2, the averagemotion coherence in a trial would
remain unchanged (hence the unbounded diffusionmodel predicts
that such a perturbation would have no effect on accuracy).
The absorbing O–U model with negative λ predicts that such
a perturbation would increase accuracy, because the first pulse
could cause the correct absorbing boundary to be reached. By
contrast, the reflecting O–Umodelwith positive λ predicts that the
perturbation would decrease accuracy, because the information
in the first pulse may be lost if the reflecting boundary is
reached. Fig. 7b verifies these predictions by simulations. Note
that the effects of the pulse perturbation are not due to the
primacy/recency properties of the models (as we intentionally
selected the boundary and λ values so that the primacy/recency
effectswere balanced), but originate from the characteristics of the
two types of boundaries. However, it is worth mentioning that the
effect of the pulse only occurs if the following two conditions are
satisfied. First, the pulse needs to be sufficiently large to move the
integrator to the boundary. Second, the pulse needs to be presented
early in a trial. Otherwise the pulse will not affect the performance
of the absorbingO–Umodel (as the inputs donot affect the decision
process once the integrator hits absorbing boundaries).
Our analysis also shows that the accuracy in the TC paradigm is

maximized if parameter λ is adapted3 depending on the required
reaction time tc . If subjects indeed adapt λ depending on tc , then
they should achieve higher accuracy when tc can be anticipated.
This predicts that the accuracy for a given tc should be higherwhen
tc is constant within a block (and hence can be anticipated) than
when it varies within a block.

6. Discussion

The present study compared the properties and performance
of the O–U models with absorbing and reflecting boundaries in

3 In the TC paradigm the O–U model produces the same simulated behaviour
as a neurocomputational model called the leaky competing accumulator (LCA)
model (Usher & McClelland, 2001), when the λ parameter of the O–U model is set
to the difference between two parameters of the LCA model: synaptic weights of
inhibitory connections and leak. Therefore, the effective value of λ can be adapted
by changing the inhibitory weights in the LCA model. In the biological neural
networks synaptic weights can be adapted either via synaptic plasticity or through
neuromodulation.
Table 2
Comparison of the properties of the absorbing and reflecting O–U models.

Absorbing Reflecting

Weighting of inputs
λ > 0 Uniform Recency
λ < 0 Primacy Uniform
λ = 0 Primacy Recency

Error rate λ 6= 0 Symmetric
λ = 0 Equality

Optimality λ < 0 λ > 0

the TC paradigm. The main results are summarized in Table 2.
First, we showed how different boundaries affect the dynamics of
the decision process by visualizing the probability density of the
integrator state (Fig. 2). We then showed that the primacy and
recency effects introduced by the boundaries and the parameter
λ coexist in the bounded O–Umodels, and the joint effects depend
on the two independent elements (Fig. 3). Moreover, the absorbing
and reflecting O–U models can achieve the same error rate for
any tc by flipping the sign of λ (Fig. 4). Finally, we showed that
the reflecting O–U model with positive λ (and the absorbing O–U
model with negative λ) produces lower error rates than the model
with λ = 0 (Fig. 5), andwe numerically found the optimal λ values
for the bounded O–U models that yield the minimum error rate
(Fig. 6).

6.1. Optimal integration with boundaries

This paper has shown that when the range of possible values of
the integrator state is constrained, the simple integration of differ-
ence in evidence is not the optimal procedure, and a better perfor-
mance can be yield by the O–U model, especially for long tc . This
suggests that given the limited range of the firing rates of integra-
tor neurons, the neural decision circuits could achieve a higher ac-
curacy in tasks with long tc employing an integration procedure
similar to the O–Umodel rather than the linear integration. In par-
ticular, if the brain employs a mechanism similar to the absorbing
boundaries, as suggested by the neurophysiological data of Kiani,
Hanks, and Shadlen (2008), the accuracy of choices in tasks with
long tc would be maximized by employing leaky integration.
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6.2. Relationship to other studies

Since the O–U model is reduced to the diffusion model when
λ = 0, the results presented in this paper extend our previous
findings on the diffusion model with boundaries (Zhang et al.,
2009). In particular, Zhang et al. (2009) showed that the diffusion
modelswith absorbing and reflecting boundaries achieve the same
error rate. Such equality is a special case of the error rate symmetry
of the bounded O–U models by setting λ = −λ = 0.
In the TC paradigm, the O–U model produces the same

simulated behaviour as the leaky competing accumulator (LCA)
model (Usher & McClelland, 2001), when the λ parameter of the
O–U model is set to the difference between inhibition and decay
parameters of the LCA model. Simulations of the LCA model with
attracting boundaries showed that it maximizes the accuracy
in the TC paradigm when the inhibition is lower than the
leak (Bogacz, Usher, Zhang, &McClelland, 2007). These simulations
are consistent with the results of this paper, because for such
parameter values the LCA model corresponds to the O–U model
with λ < 0.
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Appendix A. The probability density function for the bounded
O–U model

This appendix describes calculation of the probability density
function p(X, t) for the O–U models with absorbing and reflecting
boundary conditions. A solution of this problem for λ < 0 has been
provided by Saphores (2005). Herewe reiterate the calculation and
extend the solution to both positive and negative λ.
Let us consider a general case: an O–U process defined in Eq.

(1) is bounded over [L, R], where L and R are finite absorbing
or reflecting boundaries defined in Eqs. (4) and (5), respectively.
Let p(X, X0, t) be the probability density of X(t) at time t given
that X(0) = X0. The density satisfies the Kolmogorov backward
equation (Karlin & Taylor, 1981):

∂p(X, X0, t)
∂t

= −(µ+ λX0)
∂p(X, X0, t)

∂X0
+

(
σ 2

2

)
∂2p(X, X0, t)

∂X20
,

(A.1)

where the coefficientsµ, λ, and σ are defined in Eq. (1). Since X(t)
has fixed value X0 at t = 0, the initial probability distribution is a
delta function:

p(X, X0, 0) = δ(X − X0). (A.2)

Goel and Dyn (2003) showed that if boundaries are absorbing,
p(X, X0, t) has to satisfy:

p(X, X0, t) = 0, for X0 = L or R, (A.3)

and reflecting boundaries at L and R imply the following no-flux
boundary conditions:

∂p(x, y, t)
∂y

= 0, for X0 = L or R. (A.4)

To solve Eq. (A.1)we separate variables (Boyce &DiPrima, 1997)
and seek a solution as the weighted sum of elementary solutions.

p(X, X0, t) =
∞∑
j=0

aj(t) φj(X0). (A.5)

For one of the elementary solutions a(t) φ(X0), substituting
Eq. (A.5) in (A.1) and rearranging terms, we obtain:
a′(t)
a(t)
=

σ 2

2φ(X0)
φ′′(X0)+

µ+ λX0
φ(X0)

φ′(X0). (A.6)

Since the left side of Eq. (A.6) depends only on t , while the right
side only on X0, they must be equal to some constant, denoted by
−ξ . Then the solution for the time-dependent coefficients a(t) is:

a(t) = Ke−ξ t , (A.7)

and the function φ(X0) satisfies:

σ 2

2
φ′′(X0)+ (µ+ λX0)φ′(X0)+ ξφ(X0) = 0. (A.8)

Substituting (A.7) into (A.5), the density p(X, X0, t) yields:

p(X, X0, t) =
∞∑
j=0

Kj e−ξjt φj(X0). (A.9)

The coefficients Kj in Eq. (A.9) are obtained from the initial
probability at t = 0. Firstly multiply both sides of (A.8) by a
function of X0:

r(X0) =
2
σ 2
exp

(
2µX0 + λX20

σ 2

)
, (A.10)

then φ(X0) should satisfy

exp
(
2µX0 + λX20

σ 2

)
φ′′(X0)+

2µ+ 2λX0
σ 2

× exp
(
2µX0 + λX20

σ 2

)
φ′(X0)+ ξ r(X0)φ(X0)

=

[
exp

(
2µX0 + λX20

σ 2

)
φ′(X0)

]′
+ ξ r(X0)φ(X0) = 0. (A.11)

Eq. (A.11) is the classical Sturm–Liouville equation. From the
Sturm–Liouville theorem (Boyce & DiPrima, 1997), there exists an
infinite set of non-negative eigenvalues ξj (j = 1, 2, . . . ), and
associated eigenfunctionsφj(X0) that satisfy Eq. (A.11). Besides, the
normalized eigenfunctions form an orthogonal set with respect to
the function r(X0). Hence for any two eigenfunctions φi(X0) and
φj(X0), there is∫ R
L r(X0)φj(X0)φi(X0) dX0∫ R
L r(X0)φ

2
j (X0) dX0

= δij, (A.12)

where δij is the Kronecker delta function. For t = 0, a single
elementary solution of the density p(X, X0, t) in Eq. (A.5) is:

p(X, X0, t) = Kjφj(X0) = δ(X − X0). (A.13)

Multiplying both sides of Eq. (A.13) by:

r(X0)φi(X0)∫ R
L r(X0)φ

2
j (X0) dX0

, (A.14)

and taking the integral over the interval [L, R], we obtain:

Kj

∫ R
L r(X0)φj(X0)φi(X0) dX0∫ R
L r(X0)φ

2
j (X0) dX0

=

∫ R
L r(X0)φi(X0)δ(X − X0) dX0∫ R

L r(X0)φ
2
j (X0) dX0

,

(A.15)

and the coefficient Kj is:

Kj =
r(X)φj(X)∫ R

L r(X0)φ
2
j (X0) dX0

. (A.16)

To get the solutions of eigenvalues ξ and eigenfunctions φ(X0),
weneed to solve the differential equation (A.8). First assumeλ < 0,
and define a new variable z:
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z =
√
−2λ

X0 + µ/λ
σ

. (A.17)

Substituting Eq. (A.17) into (A.8) yields:

λφ′′(z)− λzφ′(z)− ξφ(z) = 0. (A.18)

We seek the solution of φ(z) of the form:

φ(z) = ez
2/4ω(z). (A.19)

Substituting Eq. (A.19) in (A.18), the exponential term is canceled
and the new function is:

d2ω(z)
dz2

+

(
1
2
−
ξ

λ
−
1
4
z2
)
ω(z) = 0. (A.20)

Eq. (A.20) is the classical parabolic cylinder function, and there
exists two independent solutions, given by (Abramowitz & Stegun,
1965):
ω1(z) = exp

(
1
4
z2
)

F

(
ξ

2λ
;
1
2
;
z2

2

)
,

ω2(z) = z exp
(
1
4
z2
)

F

(
1
2
+
ξ

2λ
;
3
2
;
z2

2

)
,

(A.21)

whereF (.) is the confluent hypergeometric function. Substituting
Eq. (A.21) in (A.19) and representing Eq. (A.21) as a function of X0
yields:
E1(X0) = F

(
ξ

2λ
;
1
2
; −

λ

σ 2
(X0 + µ/λ)2

)
,

E2(X0) =
√
−2λ

X0+µ/λ
σ

F

(
1
2
+
ξ

2λ
;
3
2
;−

λ

σ 2
(X0 + µ/λ)2

)
.

(A.22)

For the case of λ > 0, select the substitution of X0 as:

z =
√
2λ
X0 + µ/λ

σ
. (A.23)

Then by following the same approach, we can obtain the elemen-
tary solutions for φ(X0):

E1(X0) = exp
(
−
(µ+ λX0)2

λσ 2

)
×F

(
1
2
−
ξ

2λ
;
1
2
;
λ

σ 2
(X0 + µ/λ)2

)
,

E2(X0) = exp
(
−
(µ+ λX0)2

λσ 2

)
×F

(
1−

ξ

2λ
;
3
2
;
λ

σ 2
(X0 + µ/λ)2

)
.

(A.24)

The solution of Eq. (A.8) is the linear combination of the two
elementary solutions given by (A.22) or (A.24) (depending on
the sign of λ). For absorbing boundaries, φ(X0) must satisfy the
following boundary condition (cf. Eqs. (A.3) and (A.5)):

φ(L) = φ(R) = 0. (A.25)

By appropriately selecting the weighting value, the solution of
φ(X0) for absorbing boundary condition is:

φ(X0) = E1(X0)E2(L)− E1(L)E2(X0), (A.26)

and the eigenvalues ξ can be obtained numerically by seeking the
roots of the equation:

E1(L)E2(R)− E1(R)E2(L) = 0. (A.27)

If the boundaries are reflecting, the boundary condition changes
to:

∂φ(L)
∂X0

=
∂φ(R)
∂X0

= 0. (A.28)
The above condition is satisfied when:

φ(X0) = E1(X0)E ′2(L)− E
′

1(L)E2(X0), (A.29)

and the associated eigenvalues are the roots of:

E ′1(L)E
′

2(R)− E
′

1(R)
′E ′2(L) = 0. (A.30)

Substituting Eqs. (A.16) and (A.26) (or (A.29) for reflecting
boundaries) in (A.9), we obtain a series representation of p(X, t)
with starting point X0.

Appendix B. Symmetry of the error rate for the bounded O–U
model

Since the analytical solution of the error rate of the bounded
O–U model is not available, it is not straightforward to prove
the symmetry property of the bounded O–U model in Eq. (8) for
arbitrary tc . Instead, this appendix proves a special case of Eq. (8)
when tc →∞, i.e., the target equation is:

P(abs)(tc, λ)|tc→∞ = P(ref)(tc,−λ)|tc→∞. (B.1)

First let us consider the absorbing O–U model bounded
between ±b. To simplify the calculation, we make the following
transformation:

b̂←
b
µ
, and µ̂←

(µ
σ

)2
. (B.2)

For the absorbingO–Umodel, since the density of the integrator
state p(X, t) converges to zero as tc grows, X(t) will reach one of
the boundaries as tc → ∞. Hence, the error rate of the absorbing
O–U model with infinite tc is the same as the error rate of the
unbounded O–Umodel in the IC paradigm, which has an analytical
solution given by (Bogacz et al., 2006):

P(abs)(tc, λ)|Tc→∞ =
erf
(√

µ̂

λ
(1+ λb̂)

)
− erf

(√
µ̂

λ

)
erf
(√

µ̂

λ
(1+ λb̂)

)
− erf

(√
µ̂

λ
(1− λb̂)

) ,
(B.3)

where erf(.) is the error function given by:

erf(x) =
2
√
π

∫ x

0
e−t

2
dt. (B.4)

Now let us consider the error rate of the reflecting O–U model.
Recall that the reflecting O–U model has zero eigenvalue ξ0 = 0
(cf. Table 1). For tc → ∞, the time-dependent coefficients e−ξ t in
Eq. (A.9) vanish and the stationary density of X(t) is:

p(X,+∞) = φ0(X0)
r(X)φ0(X)∫ b

−b r(X0)φ
2
0(X0) dX0

, (B.5)

where r(X) is defined in Eq. (A.10), and the eigenfunction φ0 is
defined in Eq. (A.29).
For λ < 0, the two elementary solutions of Eq. (A.29) are given

by Eq. (A.22). In order to simplify the expression, let:

V =
X
µ̂
+
1
λ
, and V0 =

X0
µ̂
+
1
λ
=
1
λ
, (B.6)

and the lower and upper boundaries in Eq. (A.22) are given by:

L =
1
λ
− b̂, and R =

1
λ
+ b̂. (B.7)

By this transformation, the drift term µ in Eq. (1) is eliminated
and the density p(X,+∞) can be calculated in the terms of V and
V0:

p(V ,+∞) = φ0(V0)
r(V )φ0(V )∫ R

L r(V0)φ
2
0(V0) dV0

. (B.8)
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Substituting Eqs. (A.6) and (A.7) in Eq. (A.22), and setting
the eigenvalue ξ0 = 0, the two elementary solutions of the
eigenfunction φ0(w) become:
E1(V ) = F

(
0;
1
2
; −µ̂λV 2

)
,

E2(V ) = V
√
−2µ̂λF

(
1
2
;
3
2
;−µ̂λV 2

)
.

(B.9)

The derivative of Eq. (B.9) is:{
E ′1(V ) = 0 ,
E ′2(V ) =

√
−2µ̂λ exp(µ̂λV 2).

(B.10)

Substituting Eqs. (B.9) and (B.10) in (A.29) yields the eigenfunc-
tion of the stationary distribution:

φ0(V ) =
√
−2µ̂λ exp

(
−
µ̂

λ
(λb̂− 1)2

)
. (B.11)

Recall that the error rate of the reflecting O–U model can be
represented by integrating p(V , tc) from the lower boundary L to
the start point V0 (cf. Eq. (7)). For tc → ∞, p(V , tc) converges to
the stationary distribution in Eq. (B.8). Hence the error rate is:

P(ref)(tc,−λ)|tc→∞ = φ0(V0)

∫ V0
L r(V )φ0(V ) dV∫ R
L r(V0)φ

2
0(V0) dV0

. (B.12)

Substituting Eqs. (A.10) and (B.11) in (B.12), the error rate can
be analytically obtained, as:

P(ref)(tc, λ)|tc→∞ =
erfi

(√
µ̂

λ

)
+ erfi

(√
µ̂

λ
(−1+ λb̂)

)
erfi

(√
µ̂

λ
(−1+ λb̂)

)
+ erfi

(√
µ̂

λ
(1+ λb̂)

) ,
(B.13)

where erfi(.) is the imaginary error function, given by:

erfi(z) = erf(zi)/i , (B.14)

where i is the imaginary unit. Substituting Eq. (B.14) in (B.13), the
ER of the reflecting O–U model is:

P(ref)(tc, λ)|tc→∞

=

erf
(√

µ̂

−λ
(1+ (−λ)b̂)

)
− erf

(√
µ̂

−λ

)
erf
(√

µ̂

−λ
(1+ (−λ)b̂)

)
+ erf

(√
µ̂

−λ
(1− (−λ)b̂)

) . (B.15)
For λ > 0, the two elementary solutions in Eq. (A.29) are given

by Eq. (A.24). By applying the same approach as (B.6)–(B.10), the
eigenfunction now becomes:

φ0(V ) =
√
2µ̂λ exp

(
−
µ̂

λ
(λb̂− 1)2

)
. (B.16)

Substituting Eqs. (A.10) and (B.16) in (B.12), the eigenfunction
has the same expression as Eq. (B.15). Therefore Eq. (B.15) satisfies
both positive and negative λ.
Comparing Eqs. (B.3) and (B.15), it is clear that when the sign

of λ in the two equations changes, the error rates of the absorbing
and reflecting O–U models are exactly the same. i.e., the bounded
O–U model satisfies Eq. (B.1).

Appendix C. The asymptotic approximationof the error rate for
the bounded O–U model

This appendix derives the asymptotic error rate of the bounded
O–U model with the optimal value of λ in the limit of t → ∞.
For the absorbing O–U model, the simulation result suggests that
the error rate for t → ∞ monotonically decreases as λ (λ < 0)
decreases (cf. Fig. 6). Hence the asymptotic error rate P(∞, λ) is
given by Eq. (B.3) as λ→ −∞. Substituting Eq. (B.14) in (B.3) we
have:

P(∞, λ)|λ→−∞ =
1

1+ lim
λ→−∞

erfi
(√

µ̂
λ
(λb̂−1)

)
erfi
(√

µ̂
λ
(λb̂+1)

)
. (C.1)

Recall the asymptotic expansion of the complementary error
function for large x:

erfi(x) =
e−x

2

√
πx

(
1−

1
2x2
+
3
4x4
− · · ·

)
. (C.2)

This gives:

erfi
(√

µ̂

λ
(λb̂− 1)

)
erfi

(√
µ̂

λ
(λb̂+ 1)

) = e4µ̂b̂ (1+ 2µ̂b̂λ+ 2b̂(µ̂b̂− 1)
µ̂

λ2

)

+O(λ3). (C.3)
Substituting Eq. (C.3) in (C.1) we have:

P(∞, λ)|λ→−∞ =
1

1+ e4µ̂b̂
=

1

1+ e
4µb
σ2

. (C.4)

Note that we could obtain the same result for the reflecting O–U
model as λ→∞.
It is interesting to note that for the bounded diffusionmodel the

error rate is equal to (Zhang et al., 2009):

P(∞, 0) =
1

1+ e
2µb
σ2

. (C.5)

Comparing Eqs. (C.4) and (C.5) reveals that the bounded O–U
model can achieve the accuracy for t →∞ thatwould be obtained
by the bounded diffusion model with twice as distant boundaries.
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