
MIND, BRAIN, AND EDUCATION

Toward a Science of Learning Games
Paul Howard-Jones1, Skevi Demetriou1, Rafal Bogacz2, Jee H. Yoo2, and Ute Leonards3

ABSTRACT—Reinforcement learning involves a tight cou-
pling of reward-associated behavior and a type of learning that
is very different from that promoted by education. However,
the emerging understanding of its underlying processes may
help derive principles for effective learning games that have,
until now, been elusive. This article first reviews findings from
cognitive neuroscience and psychology to provide insight into
the motivating role of uncertain reward in games, including
educational games. Then, a short experiment is reported to
illustrate the potential of reward-based neurocomputational
models of behavior in the understanding and development
of effective learning games. In this study, a reward-based
model of behavior is shown to predict recall of newly learned
information during a simple learning game.

THE ELUSIVE THEORY OF ‘‘EDUTAINMENT’’

Games (Bergin, 1999; Gee, 2003) are a potential source of
inspiration for teachers wishing to engage their learners,
and there have been many attempts to develop experiences
that combine education with the entertainment of games
to generate so-called ‘‘edutainment.’’ Yet, attempts to find
the critical ingredients for such engagement have produced
a bewildering array of candidates. Malone (1981) identified
components of fantasy, challenge, and curiosity. Johnson
(2005) drew attention to how most computer games now
require no initial knowledge or manual. Garris, Ahlers, and
Driskell (2002) emphasized the importance of feedback
responses, reflection, and active involvement. The reason
given by most gamers for pursuing their passion is fun yet
some academics dismiss this as a ‘‘red herring’’ for educators
because, they claim, children find learning fun enough already
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(Kirriemuir & McFarlane, 2004). The same authors suggest
simplicity and repetition are the reasons why educational
games often fail. And yet, it can be observed that many
children find simple and repetitive games such as Tetris more
absorbing than a well-planned lesson. A lack of established
understanding may help explain the difficulties encountered
by those attempting to combine learning and gaming, which
have led some commentators to write the ‘‘only consensus
in this whirlwind of activity seems to be that educational
games are something of a failure’’ (Zimmerman & Fortugno,
2005). If we wish to imbue learning with the excitement
experienced by computer game players, then we need to
understand more about the processes linking cognition,
emotion, and motivation. As pointed out elsewhere in this
journal, neuroscience encourages us to consider these concepts
as closely intertwined (Fisher, Marshall, & Nanayakkara,
2009; Immordino-Yang & Damasio, 2007) and potentially
offers new ways of theorizing the motivated learner.

THE COGNITIVE NEUROSCIENCE OF MOTIVATION

When reviewing the cognitive neuroscience of reward and
motivation, note that there are differences in how terms are
applied in neuroscience compared with common usage. For
example, in cognitive neuroscience, reward usually refers to
short-term incentives that reinforce behavior. The relationship
between motivation and learning in neuroscience has been
studied chiefly in the context of reinforcement learning (Wise,
2004), a type of learning thought to support foraging among
natural food sources (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006) and an ability we share with many other animals.
Here, approach motivation is considered as the incentive to
approach or the extent to which we want something. This
appears closely related to the uptake of dopamine in a midbrain
region called the ventral striatum and, in particular, a small
nucleus of densely populated neurons within this region called
the nucleus accumbens. Midbrain dopaminergic activity has
been shown to increase when we are exposed to a variety
of pleasures including food (Farooqi et al., 2007), money
(Knutson, Adams, Fong, & Hommer, 2001), and computer
games (Koepp et al., 1988). This visceral type of motivation
may have less to do with the higher-order thinking processes
that appear to motivate us toward other activities that are
less gratifying in the short term, such as pursuing a difficult
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course of professional development. Nevertheless, as has been
pointed out by Van Geert and Steenbeek (2008), short-term
motivational processes may have a powerful influence on
long-term outcomes.

The value, or size, of an anticipated reward influences the
motivational signal it produces in the striatum. Interestingly,
this is very much influenced by context. In a study comparing
the size of anticipated monetary reward with the response
of the reward system, the maximum signal corresponded to
the maximum available reward in that context (Nieuwenhuis
et al., 2005). For example, one would expect the dopamine
released by anticipating a top prize of $10 in one game is the
same as anticipating the top prize of $100 in another.

In reinforcement learning, learning may be defined as
the change in expected value of different actions. That
is a far cry from the complex types of knowledge and
understanding that educators seek to provide. There are,
indeed, fundamental differences in the conceptualization of
learning within neuroscience and within education (Howard-
Jones, 2008). However, because reinforcement learning is
intimately entangled with the visceral motivation system just
described, understanding this type of learning may provide
insights into how we engage with certain types of task.
When we forage, we are most likely to choose the source
with the highest expected reward and, when we experience
the outcome of our choice, we adjust our information about
the source in relation to the prediction error (PE)—or how
much the actual outcome exceeds the expected outcome.
In a crude sense, PE is the extent to which an outcome is
deserving of ‘‘happy surprise.’’ This error is coded by midbrain
dopaminergic activity (Schultz, Dayan, & Montague, 1997).
As an expected outcome is determined by recent historical
contexts, this relationship between the outcome of an event
and the signal it generates in the brain (correlated with PE)
is another demonstration of the effect of context on our
response to reward. (For example, the PE signal generated by
the outcome of an action is higher if that action has generally
produced poor results in the recent past. So, a positive outcome
of an action will generate less PE if a similar result has already
been recently experienced.) Reinforcement learning is tightly
bound up with midbrain dopaminergic activity and, therefore,
with very basic motivation processes.

Perhaps of more interest to educators, the uncertainty of an
outcome also influences the brain’s response to reward. In a
study of the primate brain (Fiorillo, Tobler, & Schultz, 2003),
researchers created a certain reward by frequently presenting
a stimulus with a subsequent reward on 100% of occasions.
Other stimuli were associated with rewards that arrived with
less certainty. They showed that a stimulus associated with
the imminent arrival of a 100% certain reward generated a
similar spike of dopamine activity as the reward itself arriving
entirely unexpectedly (i.e., 0% certainty). The actual arrival
of the certain reward produced little effect at all, because

the preceding stimulus had made this a wholly predictable
event. However, when a stimulus was presented that had
been associated with reward on only 50% of past occasions,
the stimulus generated a similarly sized spike of dopamine
but then the dopamine began to ramp up again, reaching
another maximum at the moment when the reward might
(or might not) appear. This anticipatory ramp of dopamine,
together with the previous spike, resulted in uncertain reward
generating more dopamine overall than either 100% certain or
wholly unexpected reward. In other words, uncertain reward
appears to increase the type of dopaminergic response that
has been linked to motivation (Berridge & Robinson, 1998).
This effect of reward uncertainty has been suggested as an
explanation of why humans are so attracted to gambling and
games involving chance (Shizgal & Arvanitogiannis, 2003).

UNCERTAINTY, HUMAN BEHAVIOR, AND CONTEXT

Uncertain reward is a defining characteristic of games
(Caillois, 1961; Hong et al., 2009), including computer games
(Juul, 2003), and has been identified by some as an important
and pleasurable aspect of their challenge (e.g., Loftus &
Loftus, 1983). The scientific studies of uncertainty reviewed
above may add to our understanding of how uncertainty
contributes to the attraction of games, but its influence may
vary with the many forms that uncertainty takes. All games
include elements of uncertainty that derive from some chance
factor, and experiments have shown moderate risk taking in
such contexts, at around 50% success probability, heightens
motivation (e.g., Atkinson, 1957). Chance-based uncertainty,
therefore, appears to enhance motivation in the way that the
neuroscience might predict and its attractiveness is borne
out by its inclusion in the simplest traditional games. Some
games (e.g., snakes and ladders) appear to rely almost entirely
on this feature to engage their players, because each player’s
progress is completely determined by the roll of a die. However,
partial knowledge about one’s own abilities and those of one’s
competitors also contribute to uncertainty in a game, and this
type of certainty can become associated with a more complex
set of meanings than pure chance. A clearer example of this
can be found in educational institutions, where students may
be uncertain about whether they can achieve good results but
can expect rewards if they do so, whether it is a gold star, a
high mark, or a word of praise. In terms of their immediacy and
potential to reinforce behavior, these types of reward share
some similarity with the rewards often studied in cognitive
neuroscience. Here, however, educators make strenuous and
explicit efforts to provide reward solely on the basis of
effort and ability and the consistency of this reward–virtue
relationship is considered crucial to maintaining motivation
and a sense of fairness (Office for Standards in Education,
2001). Uncertainty in most tasks encountered in school,
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therefore, may feel less comfortable than in contexts where
the role of chance is acknowledged as a strong determinant,
because failure in school contexts usually has implications for
social- and self-esteem. This is illustrated by students seeking
greater challenge when the same task is presented as a game
rather than a learning experience (Clifford & Chou, 1991).
For tasks seen as educational, these students appeared most
comfortable on tasks they felt about 88% confident with. Of
course, such tasks can still help students perfect their skills,
but this diminishment of the comfort zone for uncertainty also
reduces the likelihood of surprise and may diminish the type
of dopaminergic response reviewed above.

A possible solution to this problem is to introduce chance-
based gaming elements into educational tasks. This can
increase uncertainty without threatening esteem and should,
therefore, increase their attractiveness to learners. To test
this, a class of 11–12-year-olds was asked to practice their
mental mathematics by playing a purpose-built computer
game (Howard-Jones & Demetriou, 2009). The students
answered true or false to 30 mathematical statements with
the aim of maximizing their score. However, before seeing
each question, they had to decide whether to ask it from Mr.
Certain or Mr. Uncertain. If a student answered correctly,
he/she would receive one point from Mr. Certain and either
zero or two points from Mr. Uncertain, depending on the toss
of an animated coin. As predicted, there was a preference for
Mr. Uncertain, and this preference increased over the game.
Our educational common sense is that, if a student has the
correct answer, they should receive a mark. Yet here, students
showed a marked preference for earning the opportunity for
more uncertain reward.

The addition of chance-based uncertainty to an educational
task should not be dismissed as a ‘‘sugar coating on the
bitter pill of learning,’’ because it can heighten the emotional
response to the learning itself. In a study of adults playing
a purpose-built computer, two dice were thrown and the
resulting points could be kept if a subsequent question
was answered correctly (Howard-Jones & Demetriou, 2009).
Participants tried the game in two conditions, with and
without the gaming element (arranged by keeping the dice
fixed). Physiological measurement showed the emotional
response to answering questions was greater when the gaming
element was enabled and rewards were uncertain (Howard-
Jones & Demetriou, 2009).

REWARD UNCERTAINTY AND THE SUBVERSION
OF LEARNING DISCOURSE

It is certainly not suggested here that chance-based reward
uncertainty is the only factor that serves to make computer
games enjoyable. As with educational tasks, popular computer
games involve many sources of uncertainty deriving from

chance but they also include other, more socially sensitive
factors such as the ability of the participants. Shooting for a
target in a game usually requires good visual attention and
motor abilities as well as a little good luck. However, within
the social contexts of education, the acknowledged role of
chance-based uncertainty in a task may be a critical factor
influencing how students interact with it. And, because it is
a factor that educators usually strive to eliminate, learning
and gaming tasks can usually be distinguished according to
whether it is present. This may explain why a modicum of
explicit chance-based uncertainty added to a learning task
can transform the discourse around the task into a type more
commonly found in a football game than in a classroom.

The discourse generated when chance-based uncertain
reward and learning is combined became the specific focus of
another classroom study when students (13–14 years of age)
collaborated in pairs in a science learning game (Howard-
Jones & Demetriou, 2009). Gaming uncertainty appeared
to subvert the conventional learning discourse, culturing
the types of constructions and exchanges that are more
often observed in sport. Failure was attributed to bad
luck, while success was celebrated vigorously (often with
singing and dancing) as a triumph of ability. Big losses
as a result of gaming made a significant emotional impact
but did not appear to deter students or generate a sense
of unfairness. Furthermore, while supporting motivation,
the elicitation of ‘‘sport talk’’ suggests gaming uncertainty
may encourage additional resilience to failure. Indeed, the
opponent’s advantage was always vulnerable to a bad throw
of the dice and students referred to this as a source of hope.

THE REWARD SYSTEM AND EDUCATIONAL LEARNING

Most formal learning benefits from declarative memory,
that is, the ability to encode, store, and explicitly recall
information. A link between declarative memory and reward
makes evolutionary sense because it is helpful to remember,
for example, the location where rich sources of food have
previously been found. However, behavioral studies of
rewarded encoding and recall have produced mixed results.
Some early research has reported motivational effects on
memory (Eysenck & Eysenck, 1982; Heinrich, 1968; Wiener,
1966), whereas other studies have been inconclusive (Nilsson,
1987) with even the effect of rewards on general performance
motivation being called into question (Deci, Koestner, & Ryan,
1999). A study by Loftus (1972) showed effects of reward on
encoding and suggested these arise from enhanced attention,
rather from the reward itself. In other words, rewards can
focus the attention of individuals more on some stimuli than
others, thus making them more salient and easier to remember.
In this study, Loftus showed that reward-associated items
were not only better recognized in subsequent tests but also
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fixated on more frequently while participants encoded them.
Once longer fixation was taken into account, no other effect
of reward on memory performance could be found. Cellular
mechanisms for the effect of attention on memory recall
have been put forward (Muzzio, Kentros, & Kandel, 2009).
However, in a recent imaging study, researchers also suggested
a more direct effect of reward on memory encoding (Adcock,
2006). Declarative memory formation is strongly linked to
another brain system in the medial temporal lobe and, in
particular, the hippocampus within it. Reward may promote
memory formation via dopamine release in the hippocampus
just before learning (Lisman & Grace, 2005). Evidence for
this direct link comes from the observation that, in a study
of adults incentivized by money to remember contextual
information, higher activity in the nucleus accumbens prior
to receiving the information predicted improved memory
performance (Adcock, 2006). A complementary study by
Callan and Schweighofer (2008) showed a correlation between
midbrain dopaminergic activity during rewarded recall and
performance. This connection between dopaminergic activity
and memory suggests estimates of the brain’s response to
reward may provide a more accurate predictor of memory
performance than the rewards themselves and help explain
why behavioral studies that focus on the absolute value of
the reward have produced inconsistent results. Whether the
reward-memory effect requires attention as a mediator or
involves a more direct process, the link between them, of
course, remains of strong educational interest.

The concepts reviewed above suggest a basis for under-
standing how, in a learning game, the experience of the gaming
may influence declarative memory of educational informa-
tion. More specifically, improved memory performance during
a game should be preceded by higher levels of estimated
dopaminergic response (i.e., higher levels of PE). The demon-
stration of such an effect may suggest ways in which periods
during computer-based learning games when learning is most
likely can be identified and exploited via neurocomputational
algorithms in the software. However, the chief educational
significance of such a relationship would be to highlight the
relevance of considering the brain response to reward, rather
than just the absolute value of a reward itself, when incen-
tivizing learning and/or developing and implementing learning
games. We now report results of a study aimed at testing this
hypothesis with respect to recall and which demonstrate the
potential educational value of the concepts reviewed above.

METHOD

Participants were 16 postgraduate student volunteers (mean
age 30 years 6 months; seven females and nine males). A
computer-based quiz game was designed in which participants
could win the points they found in one of four boxes, if

Fig. 1. Screen shot from the game used in the experiment.

they answered a subsequent multiple-choice quiz question
correctly (see screen shot in Figure 1). This part of the learning
game was based on the four-armed bandit task used by Daw
et al. (2006) in which payouts for each arm of the bandit were
generated from a Gaussian distribution whose mean diffused
in a decaying random walk (so resembling the ebb and flow of
natural food sources). Each participant experienced 60 trials
of 30 seconds duration each. Each trial began with a 6-second
window allowing participants to select one of the boxes, after
which the points available from that box were immediately
revealed (Figure 2). The participant was allowed to keep the
points if, during the next 12 seconds, they could correctly
answer a multiple-choice question. Questions concerned the
content of a text which was unfamiliar to all participants (‘‘The
Golden Bough’’; Frazer, 1993), to minimize the likelihood of
prior knowledge. Having selected their answer, participants
were given 6 seconds to indicate their confidence in their
response. Feedback was then provided on the screen for
6 seconds. If their answer had been correct, the feedback
would be congratulatory. If not, the correct answer would
be highlighted, allowing them to study this in readiness for
the question being repeated later in the quiz. Questions were
randomly selected from a pool of 15 (with replacement), and
the position of the four answer options on the screen would

Fig. 2. Illustration of the timeline within a trial (see text for detail of
trial content).
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also be randomly ordered on each presentation. If a question
was answered correctly twice, it would be removed from the
pool. There were a total of 60 trials and participants were
made aware, before taking part, that they could win a cash
prize of £50 if they achieved the highest score.

MODELING OF BEHAVIOR AND ESTIMATION
OF A CORRELATE OF DOPAMINERGIC ACTIVITY

In the task of deciding which of the four sources of points to
select, the participant needs to learn the magnitude of reward
associated with each source. The process of learning the
reward magnitudes can be described by reinforcement learning
models. Such models provide the estimates of participants’
PE on each trial and various parameters characterizing the
learning process. In our study, we have used the Kalman
filter model, which was used by Daw et al. (2006) to describe
learning in their experiment. The formal details of the model
can be found in Daw et al. (see Supplementary Materials) and
so here we provide only an intuitive description of the model
(and its parameters).

The model assumes that the participant learns the expected
rewards associated with each box (their values at the start of
the experiment are described by parameter μi,0). After choosing
a box and observing the reward it provides, the expected
reward associated with the box is updated proportionally to
PE which, as above, is defined as the difference between the
obtained reward and the expected reward. Thus, if the reward
was higher than expected, PE is positive and the expected
reward is increased, whereas if the reward is lower than
expected, PE is negative and the expected reward is decreased.

The model also assumes that the participant has certain
levels of uncertainty about the expected rewards associated
with each box (their values at the start of the experiment
are described by parameter σ2

i,0). Each time a box is chosen,
its reward uncertainty reduces, whereas for other boxes, the
uncertainty increases (by amount described by parameter
σ2

d). Thus, in general, the uncertainty is lower for boxes
chosen recently and higher for boxes not chosen for a long
time. This uncertainty influences the degree to which the
expected reward is modified after observing the reward: If
the participant has great uncertainty about the expected
reward associated with the chosen box, the expected reward
is modified substantially (proportionally to PE—see above),
so the expected reward closely approaches the value of the
observed reward. In contrast, if the uncertainty is small,
the expected reward is only slightly modified. The amount
of expected reward modification also depends on another
parameter (σ2

o ) describing how noisy the rewards seem to
the participant. If they seem very noisy, they should not
be greatly trusted and the expected reward is only slightly
modified. However, if the rewards do not appear very noisy,

expectations are modified more strongly when a reward is
observed.

Finally, the model includes forgetting of expected rewards:
If boxes are not chosen, their expected rewards decay (with
a rate described by parameter λ) toward a certain value
(described by parameter θ).

It is also necessary to model how participants choose
the boxes on the basis of their estimated rewards. When
choosing between the boxes, participants faced the classic
explore/exploit dilemma: They had to balance the desire to
exploit (and select what seemed, according to accumulated
experience, the best option) against the need to explore
(i.e., select another option that may also have provided
valuable information for improving future decisions). In
general, there is no known optimal policy for trading off
exploration and exploitation (Cohen, McClure, & Yu, 2007).
It is considered that human decisions to exploit sources with
highest reward involves a network that includes dopaminergic
striatal processes, whereas frontal cortical regions are involved
in occasionally switching to exploratory behavior that allows
collection of information about other sources (Daw et al.,
2006; Howard-Jones, Bogacz, Yoo, Leonards, & Demetriou,
2011). Daw et al. compared four different models of action
selection that could be used to predict selections in this task.
They found that the actions selected by their participants
were best described by the ‘‘softmax’’ model, in which the
choice of action, including the choice of suboptimal actions,
was determined probabilistically on the basis of the actions’
relative expected values. This meant, for example, that the
bandit arm with the highest expected value was chosen most
of the time and the arm with the lowest expected value was
chosen least (but still occasionally chosen).

We fitted an identical Kalman filter model of learning and
softmax model of selection as those used by Daw et al. (2006)
to our data describing box selection. The values of the free
parameters that gave the best fit of the softmax model for
the data derived from our group of participants are provided
in Table 1. Although we sought a single value of each of the
above parameters for our group of participants, the parameter
characterizing the extent of probabilistic exploratory behavior
(β) was fitted for each individual participant, and so the mean
and SD for this parameter across participants are provided.

We then used an internal signal of this model, the PE, as
an estimated correlate of the dopaminergic activity likely to
be generated in the nucleus accumbens as a result of making a
box selection (Daw et al., 2006; McClure, Berns, & Montague,
2003; O’Doherty et al., 2004).

ANALYSIS AND RESULTS

Overall, there were 960 trials (16 × 60) in which 469 questions
were answered correctly, 469 were answered incorrectly, and
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Table 1
The Free Parameters Providing the Best Fit of the Kalman Filter and Softmax Model to the Decisions Made by Participants

Initial expected
reward, μi,0

Initial uncertainty in
expected reward, σ2

i,0

Increase in uncertainty
on each trial, σ2

d

Noise in reward
observation, σ2

o

Decay
parameter, λ Decay center, θ

Exploration
parameter, β

52.656 12.991 0.20985 0.28494 0.91892 52.451 0.38835 ± 0.23663

Note: A single value of each parameters for our group of participants was determined except for exploration parameter (β), which was fitted for each individual
participant, and so a mean and SD for this parameter across participants are provided.

Fig. 3. Percentage error rates for questions after one presentation
(N = 362), two presentations (N = 280), three presentations (N =
194), and four presentations (N = 108).

22 instances of participants failed to answer the question
within the prescribed time limit. Error rates improved with
repeated presentation of the same question, as shown in
Figure 3.

We were interested in whether PE in the gaming
component, as a correlate of reward system activity, was
associated with memory performance for new information.
Therefore, we restricted our analysis to those instances
when participants were presented with questions they
had previously answered incorrectly, on the assumption
that these were opportunities to demonstrate learning
achieved as a result of the game. The hypothesis under
test was that PE would be greater prior to instances when
participants successfully recalled the correct answer. We
first applied an analysis of variance with dependent variable
PE and two independent variables. The first independent
(fixed) variable was recall, with two levels: successful and
unsuccessful recall. Instances demonstrating successful recall
were defined as occurring when correct responses were given
to a question that had, on its previous presentation, been
answered incorrectly. However, instances of this type in which
participants rated their correct response as ‘‘very unconfident’’
were excluded as probable guesses. Instances demonstrating
unsuccessful recall were defined as occurring when another
incorrect response was given to a question that had, on its

previous presentation, been answered incorrectly. The other
independent (random) variable was participant (16 levels).
There was a significant main effect of recall, F(1, 17.62) =
11.65, p = .003, and participant, F(15, 15) = 9.38, p < .001,
with no significant interaction between these variables. When
a similar analysis was carried out with the absolute value of
points available in the box as the dependent variable instead
of PE, the main effect for points available barely reached
significance, F(1, 16.05) = 4.77, p = .044, with an effect for
participant, F(15, 15) = 5.34, p = .001, and no significant
interaction between participant and points. Mean values
(with SD in parentheses) of PE for instances of successful
and unsuccessful recall were 27.54 (20.35) and 23.90 (20.84),
respectively. Mean values (with SD in parentheses) of the
points available for instances of successful and unsuccessful
recall were 94.98 (28.09) and 89.69 (29.29), respectively.

Figure 4 shows a simple graphical illustration of the dis-
tribution of PE and points available prior to instances of
successful and unsuccessful recall, adjusted for individual dif-
ferences in the game trajectories of participants. To create
such an adjustment, we generated a baseline value of PE for
each participant’s game by calculating their mean PE over all
their trials. We then calculated the mean percentage devia-
tion of the participant’s PE from this baseline for each type
of trial (successful and unsuccessful recall). Across partic-
ipants, these mean percentage deviations from baseline in
PE prior to successful and unsuccessful recall (with SD in
parentheses) were 5.51 (6.11) and −8.56 (9.29). In similar fash-
ion, for each participant, we calculated the mean percentage
deviation from baseline of the value of points found in the
box for trials leading to successful and unsuccessful learn-
ing. Across participants, mean percentage deviations in points
available prior to successful and unsuccessful recall (with SD
in parentheses) were 1.99 (3.51) and −3.15 (5.68). A logistic
regression analysis was carried out with mean percentage devi-
ation of PE from baseline as a predictor of successful recall,
which was confirmed as a predictor of recall (odds ratio =
1.54; 95% confidence intervals = 1.06–2.23, p = .022). In this
context, the odds ratio provides the factor by which the odds
of recall increases, with each percentage increase in PE. The
contribution of mean percentage deviation of points from
baseline as a predictor variable in the regression model did not
approach statistical significance (p = .283).
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(a) (b)

Fig. 4. Box plots of (a) mean percentage increase in PE prior to successful and unsuccessful recall and (b) mean percentage increase in
points available prior to successful and unsuccessful recall.

DISCUSSION

As theorized on the basis of its correlation with dopaminergic
reward activity, PE was a significant predictor of recall in
our learning game. These results complement the observed
relationship between midbrain dopaminergic activity and
recall performance (Callan & Schweighofer, 2008), suggesting
the value of neural concepts in understanding and developing
learning games. However, several caveats should be noted.
First, our experimental design restricted our observations to
the impact of reward on recall, although the imaging literature
suggests that estimating the brain’s response to reward may
also help predict encoding performance (Adcock, 2006). The
opportunity for encoding the correct answer in our experiment
occurred 18 seconds after choosing a box. The dopaminergic
response to box selection would have subsided after such
a delay, which was beyond the type of time period within
which a dopaminergic response and an action should co-occur
for learning to be enhanced (Bogacz, McClure, Li, Cohen, &
Montague, 2007). Additionally, encoding would have occurred
in the negative context of having just lost points. Second, the
design of this study included a task involving meaningful
information which helped demonstrate educational relevance.
However, this learning was factual recall and did not test
understanding, which is of increasingly greater educational
interest. However, if improved recall occurs via enhanced
attention, then deeper types of learning may also benefit
and, as discussed below, uncertain reward is now being
applied in the development of pedagogy that attends to these
types of learning. There is considerable scope for further
research on the underlying cognitive and neural processes
by which reward influences learning and for evaluating
applications of this knowledge in a range of educational
contexts. Finally, when considering the limitations of our
results, it should be borne in mind that participants in
our learning game played individually. Workers reviewing

the potential of neuroscience in education (Meltzoff, Kuhl,
Movellan, & Sejnowski, 2009) echo the many voices in
education that emphasize the importance of social interaction
for learning and, indeed, classroom games are frequently
collaborative and usually competitive. Little is known about
the neuroscience of competitive gaming, although recent
research reveals we code our competitor’s losses egocentrically
as our rewards (Howard-Jones et al., 2011), suggesting it
may be our competitor’s unexpected losses that support our
declarative memory performance.

The emerging relationship between reward and learning
may contribute to the next generation of commercial
educational games. These may include systems that maximize
dopaminergic activity for periods during a game that are
critical for learning and perhaps even adapt to the behavior
of their players to achieve this. However, application is
not restricted to computer games and neural concepts
about reward have underpinned recent efforts to develop
pedagogy for whole-class teaching with immersive gaming
(or ‘‘twigging’’) (Howard-Jones, 2010; Howard-Jones et al.,
under revision). This pedagogy aims to support all levels of
understanding (as defined by Bloom) using learning games
to generate brief periods when students may be especially
engaged and receptive as a result of anticipating uncertain
reward and exploiting these as special opportunities for the
teacher to scaffold their learning.

In summary, our study adds to existing evidence suggesting
education may benefit from revising the constructions around
reward and learning that presently characterize its discourse.
In particular, the potential of uncertain reward to increase
motivation provides insight into an important aspect of how
games, including learning games, engage their players. More-
over, computational modeling of reward system activity during
gaming can help educators and developers understand how
gaming events influence educational learning. Much, however,
remains to be investigated, particularly in regard to the neural
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and cognitive processes by which reward supports the encod-
ing and recall of declarative memory. Although, as demon-
strated here, current findings from neuroscience can already
provide insight into the reward–memory relationship observed
in behavioral terms, further research is needed to determine
how this occurs (e.g., directly and/or via attention), and how
other factors, such as emotional response, interact with these
processes. More broadly, the integration of such understand-
ing into everyday classroom practice may require the careful
engineering of pedagogical approaches that attend to the many
important aspects of classroom learning we already appreciate
as important. This must include consideration of, for example,
how techniques that exploit the engaging properties of uncer-
tain reward conjoin with the teacher’s scaffolding of learning,
feedback to students, and the general dynamic properties
of teacher–learner interaction (Perkins, 2009). Collaborative
enterprise between education and the sciences of mind and
brain may help address these questions and contribute to
develop new ways to engage the learners of the future.
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