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In this paper we investigate trade-offs between speed and accuracy that are produced by humans when
confronted with a sequence of choices between two alternatives. We assume that the choice process is
described by the drift diffusion model, in which the speed–accuracy trade-off is primarily controlled
by the value of the decision threshold. We test the hypothesis that participants choose the decision
threshold that maximizes reward rate, defined as an average number of rewards per unit of time. In
particular, we test four predictions derived on the basis of this hypothesis in two behavioural exper-
iments. The data from all participants of our experiments provide support only for some of the pre-
dictions, and on average the participants are slower and more accurate than predicted by reward rate
maximization. However, when we limit our analysis to subgroups of 30–50% of participants who
earned the highest overall rewards, all the predictions are satisfied by the data. This suggests that a
substantial subset of participants do select decision thresholds that maximize reward rate. We also
discuss possible reasons why the remaining participants select thresholds higher than optimal, includ-
ing the possibility that participants optimize a combination of reward rate and accuracy or that they
compensate for the influence of timing uncertainty, or both.
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During decision making in natural environments,
as well as in experimental settings, humans and
animals can select to be either fast or accurate.
When accuracy is emphasized, their decisions are
slower, but when speed is emphasized, they make
more mistakes. This phenomenon is known as
the speed–accuracy trade-off (Franks, Dornhaus,
Fitzsimmons, & Stevens, 2003; Pachella, 1974;
Wickelgren, 1977).

The existence of the speed–accuracy trade-off
can be explained within the framework of sequential
sampling models of decision making (Busemeyer &
Townsend, 1993; Laming, 1968; Ratcliff, 1978;
Stone, 1960; Usher & McClelland, 2001; Vickers,
1970). In this paper we focus on one of these
models, the drift diffusion model (DDM), which is
a continuous version of the Sequential Probability
Ratio Test (Wald & Wolfowitz, 1948) and has
been shown to fit behavioural data from human
choice tasks (Ratcliff, 2006; Ratcliff, Gomez, &
McKoon, 2004; Ratcliff & Rouder, 2000; Ratcliff
& Smith, 2004; Ratcliff, Thapar, & McKoon,
2003). The DDM describes choice between two
alternatives. It makes the following assumptions:
(a) The sensory evidence supporting the alternatives
is noisy; (b) during the decision process the differ-
ence between the evidence supporting the two
alternatives is integrated over time; (c) when this
integrated difference reaches a certain positive or
negative threshold value, the choice is made in
favour of the corresponding alternative. In the
DDM, the height of the threshold controls the
speed–accuracy trade-off: If the threshold is lower,
it can be reached quicker, so decisions are faster,
but they are less accurate because they are based on
a smaller amount of noisy evidence. Conversely, if
the threshold is higher, decisions are slower, but
they are also more accurate because they are based
on the integration of more evidence.

However, an important question remains unan-
swered: What decision thresholds do people select,
especially when they are not explicitly told to
emphasize speed or accuracy, or are encouraged to
favour some ill-defined combination of both (as in
many experimental tasks)? A number of theories
addressing this question have been suggested
(Busemeyer & Rapoport, 1988; Edwards, 1965;

Mozer, Colagrosso, & Huber, 2002; Myung &
Busemeyer, 1989; Rapoport & Burkheimer, 1971).
Recently, Gold and Shadlen (2002) proposed that
participants select the threshold that maximizes
the reward rate (RR), defined as an average
number of rewards per unit of time. How the RR
can be maximized depends on the paradigm.

Gold and Shadlen (2002) considered the fol-
lowing experimental paradigm: A participant is
presented with a choice stimulus and is free to
indicate his/her choice at any time. After the
response, there is a fixed interval D between the
response and the onset of the next trial. If the par-
ticipant’s choice is correct, he/she receives a
reward, and if it is an error, the response–stimulus
interval D is increased by an additional penalty
delay Dp. This paradigm is often used in animal
studies of decision making, as it captures some
key aspects of decision making in natural environ-
ments (Gold & Shadlen, 2002).

In the above paradigm, RR depends on
threshold height. If the threshold is too low, the
participant makes fewer correct choices and
receives fewer rewards; if the threshold is too
high, response durations are so long that the par-
ticipant receives fewer rewards per unit of time
(even if most choices are correct). As shown by
Bogacz, Brown, Moehlis, Holmes, and Cohen
(2006), there exists a unique threshold for the
DDM that maximizes RR. The ability to select
this optimal threshold presumably conveys an
evolutionary advantage, providing an animal
more rewards than its competitors.

In our previous theoretical work (Bogacz et al.,
2006), we have shown how the optimal threshold
depends on task parameters, such as choice diffi-
culty and experimental delays D, Dp. We also
made experimental predictions regarding error
rates (ERs) and reaction times (RTs) that must
hold if participants indeed select the threshold
maximizing RR. This article describes experi-
ments that test the following four predictions:

1. The optimal threshold is higher for longer D,
and hence the participants should have lower
ER and longer RT in blocks of trials with
longer D.
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2. The optimal threshold depends only on
D þ Dp, rather than D and Dp individually,
and hence ER and mean RT should be the
same on blocks of trials with equal D þ Dp,
even if D and Dp themselves differ between
blocks.

3. The values of decision thresholds estimated by
fitting the DDM to the distributions of RT
should match the optimal values that maximize
RR.

4. The mean (normalized) RT, plotted as a func-
tion of ER, should follow a particular relation-
ship defined by the optimal performance curve
(described in detail in the next section).

In Bogacz et al. (2006), we also derived optimal
thresholds under the assumptions that participants
maximize not only RR, but also combinations of
RR and accuracy. Here, we compare predictions
of these analyses with experimental data.

This article is organized as follows. In the next
section we review the DDM and the behavioural
predictions following the assumptions that the
participants select thresholds maximizing RR or
combinations of RR and accuracy. Then we
present two experiments and analyse their results
based on all participants, showing that they
provide partial support for the theoretical predic-
tions. Participants, on average, set their thresholds
higher than predicted by RR maximization.
However, for the 30–50% of participants who
achieved the highest reward over the entire exper-
iment, all theoretical predictions are confirmed by
the data. We also present data describing how
quickly participants learn their thresholds and
then conclude with a general discussion of the
experimental results and the relation of our work
to other studies. Some initial results of this work
were reported by Holmes et al. (2005).

Review of the optimal threshold theory

Drift diffusion model
We begin by briefly describing two versions of the
DDM: pure, which captures the main features of
the decision process and which is easier to
analyse mathematically; and extended, which fits

more details of behavioural data from choice
tasks (for more complete reviews see Bogacz
et al., 2006; Ratcliff & Smith, 2004). We use the
same notation as Bogacz et al. (2006), and all
symbols used are listed in Table 1 for reference.

Let x(t) denote the difference between evidence
supporting the first and the second alternatives
accumulated until time t. The pure DDM assumes
that at the beginning of the decision process there
is no bias towards either alternative, so x(0) ¼ 0,
and that when the signal appears, x(t) is integrated
according to the following equation (Ratcliff, 1978):

dx ¼ Adt þ cdW : ð1Þ

In Equation (1), dx denotes the change in x during
a small time interval dt. This change in x includes
two parts: constant drift Adt, representing the
average increase in x during interval dt, and noise
cdW, which has a normal distribution with mean 0
and variance c2dt, reflecting the assumption that
sensory evidence, internal processing, or both are

Table 1. Symbols used in the optimal threshold theory

Symbol Description

A Drift rate

ã Signal-to-noise ratio (squared)

c Magnitude of noise

D Delay between response and next stimulus

Dp Additional penalty delay on error trials

DT Decision time

Dtotal DþDp þ T0

ER Error rate

q Relative weight of accuracy

RA Weighted difference between RR and ER

RR Reward rate

RRm Modified RR

RT Reaction time

sA Variability of A

st Variability of T0

sx Variability of x(0)

T0 Part of RT connected with nondecision

processes

x(t) Integrated difference between evidence

supporting two alternatives

z Decision threshold

z̃ Normalized threshold

z̃o Optimal normalized threshold
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noisy. The sign of A represents which alternative is
correct. For simplicity we consider the case A . 0,
for which the first alternative is correct. The ratio
of the parameters A and c represents how easy the
task is (i.e., the signal-to-noise ratio).

The DDM assumes that as soon the value of x
reaches a positive threshold z or a negative
threshold –z, the choice is made in favour of the
corresponding alternative. A trial is considered as
correct if the threshold corresponding to the
correct alternative (i.e., the upper threshold for
A . 0) is reached, and the trial is considered as
an error when the other threshold is reached
(due to noise). For the pure DDM, the expected
value of ER is given by (Ratcliff, 1978):

ER ¼
1

1þ e ð2Az=c2Þ
: ð2Þ

The mean decision time (DT), defined as the
mean time of integration before reaching a
decision threshold, is given by (Ratcliff, 1978):

DT ¼
z

A
tanh

Az

c2

� �
: ð3Þ

The DDM assumes that the RT is composed of
DT and an additional interval T0 due to nondeci-
sion processes (e.g., visual and motor)—that is,

RT ¼ DTþ T0: ð4Þ

The pure DDM assumes that T0 does not differ
between trials, although it may differ among sub-
jects. It is useful to note that if the parameters of
the pure DDM, A, c, z, are all scaled by the same
constant, the ER and DT do not change. Thus
instead of considering these parameters, it is
simpler to consider their ratios. For simplicity
of calculations we consider the following new
parameters: a normalized threshold z̃ (which
corresponds to DT with zero noise) and

signal-to-noise ratio squared ã:

~z ¼
z

A
, and ~a ¼

A

c

� �2

: ð5Þ

For these new parameters1 Equations (2) and (3)
simplify to (Bogacz et al., 2006):

ER ¼
1

1þ e 2~a~z
, and DT ¼ ~z tanh (~a~z): ð6Þ

The extended DDM differs from the pure model
in three assumptions (Ratcliff & Smith, 2004).
First, in the extended model T0 may differ
between trials, and it is assumed it comes from
a uniform distribution with range [T0 2 st,
T0 þ st]. Second, the initial value of x is not
always equal to 0, but instead is chosen randomly
from a uniform distribution with range [ 2 sx, sx].
The nonzero value of x(0) may reflect participants’
prior expectations about probabilities of the
alternatives to be correct, or the possibility that
participants prematurely start to integrate x
before stimulus onset.

Third, in the extended model the drift is not
the same from trial to trial, but instead is chosen
randomly on each trial from a normal distribution
with mean A and standard deviation sA. Trial-
to-trial drift variability may reflect differences in
difficulty or attention between trials. The last
two forms of variability allow the extended
DDM to account for the differences between RT
on correct and error trials (Ratcliff & Rouder,
2000).

Reward rate maximization
For the sequential choice task described in
the introduction, RR is given by the ratio of the
fraction of correct trials and the average duration
of the trial (Gold & Shadlen, 2002):

RR ¼
1� ER

DTþ T0 þDþ ER �Dp
: ð7Þ

1 Although these new parameters are ratios, they have units: z̃ has units of time, and ã has units of 1/time (Bogacz et al., 2006);

while listing their values we take units of time to be seconds.
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Let us first examine the predictions made by
RR maximization, when it is assumed that the
pure DDM provides a sufficient approximation
of the decision process (we return to the extended
model below). To find the threshold maximizing
RR, we substitute Equation (6) into Equation (7),
calculate the derivative of RR with respect to z̃,
and find that, for this derivative to vanish, the
normalized threshold z̃ must satisfy:

e 2~z~a � 1 ¼ 2~a(DþDp þ T0 � ~z): ð8Þ

We refer to the solution of this transcendental
equation as the optimal normalized threshold and
denote it by z̃o. Although it does not admit an expli-
cit solution in terms of elementary functions,
Equation (8) has a unique solution (Bogacz et al.,
2006), which forms a basis for the predictions
outlined above and is labelled to remind the
reader of their contents.

Prediction z � D. The optimal threshold increases
as D lengthens. It follows intuitively that, as
opportunities to receive reward become less fre-
quent, the accuracy of each choice becomes more
important. This may also be shown formally.2

Prediction z(D þ Dp). The optimal threshold
depends only on D þ Dp, rather than on D and
Dp separately, because in Equation (8) the delays
D and Dp appear only as a sum. This makes the
nonintuitive prediction that participants should
select the same threshold for a task that has a
very short intertrial interval (D) but a long delay
imposed after errors (Dp), as for one that has a
long intertrial interval but no penalty delay. For
convenience, we denote the sum of the three
delays influencing the optimal threshold together
by Dtotal:

Dtotal ¼ DþDp þ T0: ð9Þ

Prediction z ¼ zo. The optimal threshold z̃o satisfy-
ing Equation (8) can be found numerically (since it

is known that there is only one) and directly com-
pared against thresholds chosen by a participant.
In order to perform such a comparison for
experimental data collected for given D and Dp,
the parameters of the pure DDM ã, z̃, and T0

need to be obtained by fitting the model to data.
We refer to the normalized threshold z̃ estimated
from the data as the participant’s normalized
threshold. The values of D, Dp, ã, and T0 can
then be substituted into Equation (8) and the
equation solved numerically for z̃o. For optimality,
the normalized threshold z̃o obtained in this way
should be equal to participant’s normalized
threshold z̃ obtained from fitting the model.

Prediction DT(ER). As we show in Appendix A,
Equation (8) can be used to find the relationship
between ER and DT that holds under the
optimal threshold, to which we refer as the
optimal performance curve (Bogacz et al., 2006).
This relationship has the following form:

DT

Dtotal
¼ f (ER): ð10Þ

The left side of the above equation expresses the
ratio of the time in the trial used on decision pro-
cesses to the maximum interval between the end of
one decision process and the start of the next,
while the right side is a function only of ER.
Hence, the equation describes the relationship
between ER and normalized DT as a fraction
of Dtotal. This relationship, which contains only
behavioural observables (DT and ER) and, in
Dtotal, experimenter-determined delays and the
nondecision time T0, is shown in black thick
curves in Figure 1.

The above relationship should be satisfied for
all values of signal to noise ratio ã and for all
values of total delay Dtotal. Thus the left end of
the curve corresponds to very easy tasks on which
the participants should be both fast and accurate.
The right end of the curve corresponds to the
tasks that are so difficult that the strategy

2 This is shown by differentiating Equation (8) with respect to D and noting that the derivative of z̃o is always positive.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2010, 63 (5) 867

SPEED –ACCURACY TRADE-OFF

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
0:

47
 0

5 
Fe

br
ua

ry
 2

01
4 



maximizing RR is to guess without integrating any
evidence at all. The optimal performance curve
predicts that the longest normalized DT should
be observed for ER around 18%, at which point
DT should be equal to approximately 20% of
Dtotal.

While the pure DDM is more tractable to
analysis than the extended DDM, as noted above
the latter has been used to account for a wider
range of empirical phenomena. Therefore, we
also consider whether the four predictions
described above hold if it is assumed that the
decision process conforms to the extended DDM.

Prediction z � D. Numerical explorations of the
extended DDM indicate that, like its pure form,
the optimal threshold increases as delay D is
lengthened.

Prediction z(D þ Dp). Bogacz et al. (2006) have
shown that, as for the pure DDM, the optimal

threshold depends on Dtotal (rather than on D
and Dp separately).

Prediction z ¼ zo. The optimal threshold for the
extended DDM, though different from that for
the pure DDM, can also be found numerically
(by finding the threshold maximizing Equation
73), yielding alternative versions of prediction
z ¼ zo.

Prediction DT(ER). Unlike the pure DDM, an
optimal performance curve independent of
DDM parameters cannot be defined for the
extended DDM. This is because the relationship
between DT and ER depends on the variabilities
sx and sA, as well as on D and Dp separately
(Bogacz et al., 2006).

Maximization of reward rate and accuracy
It has been suggested that while choosing the
decision threshold, participants optimize not
only RR but also accuracy (Maddox & Bohil,

Figure 1. Optimal performance curves. Horizontal axes show the error rate, and vertical axes show the decision time (DT) normalized by

total delay Dtotal. The thick line (identical in both panels) is the optimal performance curve for the reward rate (RR). The thin lines show the

generalized optimal performance curves for reward accuracy (Panel a) and modified RR (Panel b). Each curve corresponds to a different value

of q (relative weight of accuracy) ranging from 0 (when it reduces to the optimal performance curve for RR, shown in the thick lines) to 0.5

(top curves) in steps of 0.1.

3 Equation (7) includes ER and DT, for which there are no analytic expressions for the extended DDM, but we evaluated them by

integrating numerically over a distributions of A, the expressions for ER and DT for a DDM with a variability of x(0) (given in

Bogacz et al., 2006).
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1998). We review two criteria in which accuracy is
explicitly included (Bogacz et al., 2006). In both
we assume for simplicity that Dp ¼ 0. The first
criterion is a weighted sum of RR and accuracy,
RA, which may be written as:

RA ¼ RR �
q

Dtotal
ER, ð11Þ

where q denotes the weight accorded to accuracy,
and the second term is normalized by Dtotal to
allow the units [1/time] to be consistent. The
second criterion assumes that there is a penalty q
for making an error,4 and the modified RR is
given by:

RRm ¼
(1� ER)� qER

DTþDtotal
: ð12Þ

Assuming that the decision process is well
approximated by the pure DDM, optimal per-
formance curves can be derived describing the
relationships between DT and ER for optimizing
the threshold for the RA and RRm criteria (see
Appendix A). These have the following form:

DT

Dtotal
¼ f (ER, q): ð13Þ

In both cases the right-hand sides contain the
additional weight parameter q, and hence there
exist families of optimal performance curves for
different values of q. As q approaches 0, optimal
performance curves for RA and RRm converge to
the optimal performance curve for RR, since in
this case both criteria simplify to RR. These
families are shown in Figures 1a and 1b. They
are similar in that, for both criteria, DT for the
optimal threshold is greater than that for optimiz-
ing RR (this reflects the emphasis on accuracy).
However, note also that these criteria differ in
their predictions: For RA the value of q does not
influence the ER corresponding to maximum

DT (i.e., the position of the peak), while for
RRm increasing q moves the peak to the right.
Furthermore, as q increases, the peak of the
curve for RA becomes relatively narrower than
that for RRm.

We note that the free parameter q in the cri-
terion RA (or RRm) can be adjusted so that any
single combination of ER and DT (in a certain
range) lies on the corresponding optimal perform-
ance curve. It is, however, not true that arbitrary
multiple combinations of ER and DT must all
lie on one such curve. Each criterion and choice
of q predicts a curve with a particular shape, as
shown in Figure 1, and multiple (ER, DT) data
points may or may not follow this shape (e.g., if
DT decreased monotonically across conditions as
ER goes from 0 to .5, no curve could match
the data). Hence these criteria must be assessed
by comparing with ERs and DTs from multiple
conditions and/or multiple participants, under
the assumption that the participants maximize
the same criterion, with the same q, in all the
conditions.

General method

We present the results of two experiments
designed to test whether human decision makers
set their thresholds in an optimal manner. In
both experiments participants performed
sequences of choices between two alternatives,
but the experiments differed in the stimuli used.
In the first experiment participants discriminated
the direction of movement of dots (stimuli often
used in decision studies in monkeys, e.g., by
Shadlen and Newsome, 2001). In the second
experiment participants discriminated whether
the fraction of an array occupied by stars was
greater or less than 50% (these stimuli were pre-
viously used by Ratcliff, Van Zandt, & McKoon,
1999). Both experiments were approved by the
Institutional Review Panel for Human Subjects
of Princeton University. Below we describe

4 RRm would describe reward rate in a modified paradigm in which a participant receives a unit of reward for a correct choice and

loses q units of reward for an error. Thus in the standard paradigm q describes the relative negative utility of committing an error.
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aspects common to both experiments, and later in
the Method sections of Experiments 1 and 2
we only describe aspects specific to individual
experiments.5

Participants
These were adults recruited via announcements
posted around the Princeton University campus.
Participants were predominantly undergraduate
and graduate students. Participants were paid 1
cent for each correct choice. To further increase
motivation, participants were informed that the
one who earned the most overall (in each group of
20 participants) would receive an additional prize
of $100 at the end of the experiment. All partici-
pants expressed written consent for participation.

Procedure
Participants were instructed to gain as many points
as possible on a computerized two-alternative,
forced-choice task by making correct choices. In
each trial, a stimulus was presented and remained
until the participant responded by pressing a corre-
sponding key. After each correct response partici-
pants were informed by a short beep if the response
was correct, and a point was scored. No feedback
was given following incorrect responses. After
each response there was a delay D before presen-
tation of the next stimulus (D was kept constant
within each block, but varied across blocks). On
some blocks (see below) an additional delay Dp

was imposed after error responses.

Design
The length of a block of trials was limited by fixing
overall block duration—rather than by fixing the
number of trials completed within it—in order to
enforce the importance of the speed–accuracy
trade-off. Trials were blocked by delay condition.
There were four delay conditions: (a) Condition
1: D ¼ 0.5 s; (b) Condition 2: D ¼ 1 s; (c)
Condition 3: D ¼ 2 s; and (d) Condition 4:
D ¼ 0.5 s and Dp ¼ 1.5 s (in the first three

conditions Dp ¼ 0). Before the start of the experi-
ment participants had three blocks of practice in
which no money was paid for correct choices.
Participants were informed about the number of
blocks, about their fixed duration, and that delays
between trials (and difficulty in Experiment 2)
differed between blocks, but were they not told
the exact durations of the delays (or difficulty
levels in Experiment 2).

After finishing the experiment, participants
were asked to complete a questionnaire in which
they rated (from 1 to 5) the difficulty of the exper-
iment, the degree to which they were motivated by
the 1-cent reward after each correct decision, and
by the $100 prize. Participants were also asked
whether their strategies differed between blocks
(answer yes or no), and if so to describe how
their strategies differed.

EXPERIMENT 1

Method

Participants
These were 20 adults (9 males and 11 females;
average age: 20 years).

Stimuli and apparatus
We used the same stimuli as those that were used
in other studies of decision making (e.g., Gold &
Shadlen, 2003; Palmer, Huk, & Shadlen, 2005;
Ratcliff & McKoon, 2008). The display was a
field of randomly moving dots, all of which
appeared within a 58 circular aperture in the
centre of the screen. Dots were white squares
2 � 2 pixels (0.78 square) displayed against a
black background, with a density of 16.7 dots/
deg2/s (6 dots per frame). On each trial, a fraction
of the dots moved in a single direction over time,
corresponding to that trial’s correct direction,
while the remaining dots were randomly reposi-
tioned over time. On each frame, 11% of the
dots were independently selected as the coherently

5 Complete behavioural data from both experiments and the estimated parameters of DDM for all participants can be down-

loaded from: http://www.cs.bris.ac.uk/home/rafal/optimal/data.html
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moving dots and were shifted 0.2 deg from their
position for each 40 ms (3 video frames) elapsed,
corresponding to a speed of 5 deg/s (either left-
ward or rightward). The remaining dots were
replotted in random positions on each frame.
The display was generated in MATLAB on a
Macintosh computer using the Psychophysics
Toolbox extension (Brainard, 1997; Pelli, 1997)
and software written by Joshua Gold.

Procedure
Participants were asked to decide whether the pre-
vailing motion of the dots was left or right and
had to indicate their responses by pressing “M”
(rightward motion) or “Z” (leftward motion) on
a standard keyboard (the mapping of keys to the
right and left responses was not counterbalanced
across participants). Participants were required to
release the key after each response in order to
initiate the next trial. The current score was
displayed in the centre of the screen during delay
intervals.

Design
The experiment consisted of five blocks, each
lasting 7 min. One block of trials was run for each
delay condition, except for condition D ¼ 2 s.
Two blocks were run for the D ¼ 2 s delay
condition because a single 7-min block yielded
too few trials for analysis.

Results

Behavioural results
Predictions z � D and z(D þ Dp) stated in the
introduction were tested directly by comparing ERs
and RTs on different conditions of Experiment 1
(see Figure 2). A one-way analysis of variance
(ANOVA) on delay condition (with participant as
a random effect) revealed significant differences
between delay conditions in ERs, F(3) ¼ 5.84,
p ¼ .0015, but the differences between RTs did not
reach significance, F(3)¼ 2.02, p ¼ .12.

Prediction z � D. In the first three conditions
(D ¼ 0.5, D ¼ 1, D ¼ 2) there was a significant
negative correlation between D and ER (after

subtracting each participant’s mean ER across
conditions from their ER in each condition;
r ¼ 2 .53, p , 1024), and a significant positive
correlation between D and RT (after subtracting
each participant’s mean RT; r ¼ .29, p ¼ .03).
Since we know that the ER and RT of the
DDM are monotonic functions of the decision
threshold, we can infer from Figure 2 that, on
average, in the first three conditions (D ¼ 0.5,
D ¼ 1, D ¼ 2) the participants chose higher
thresholds in the longer delay conditions. This
pattern is qualitatively consistent with prediction
z � D.

Prediction z(D þ Dp). To investigate the predic-
tion that participants should choose the same
threshold in Delay Conditions 3 (D ¼ 2 s) and 4

Figure 2. Average error rate (ER) and reaction time (RT, in

seconds) for all 20 participants of Experiment 1 and all delay

conditions. Delay conditions are indicated on x-axes—labels

correspond to Conditions 1 (D ¼ 0.5 s), 2 (D ¼ 1 s), 3 (D¼ 2 s),

and 4 (D ¼ 0.5 s, Dp ¼ 1.5 s). Error bars consider comparisons

between two adjacent conditions (inspired by Masson & Loftus,

2003). For example, in Panel a, error bar for condition D ¼ 0.5

and the left error bar for condition D ¼ 1 consider comparison

between these two conditions. The height of the error bars

corresponds to standard error of the differences between ERs (or

RTs in Panel b) in the two conditions. Specifically, the difference

is first calculated for each participant, and then the standard error

of the differences is calculated across participants; both error bars

are equal to this standard error, so they have equal heights. These

error bars have standard interpretation: If two adjacent bars are

different from each other by more than approximately two heights

of corresponding error bars, then ERs (or RTs) are significantly

different according to the paired t test.
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(D ¼ 0.5, Dp ¼ 1.5 s so that Dtotal ¼ 2 s), we com-
pared the ER and RT between these conditions.
Both ER, t(19) ¼ 2.23, p ¼ .04, and RT,
t(19) ¼ 2.49, p ¼ .02, were significantly different
between these conditions. This is not consistent
with prediction z(D þ Dp). However, as dis-
cussed below, this prediction was largely satisfied
for a subset of the best performing participants.

Estimating parameters of the DDM
Testing predictions z ¼ zo and DT(ER) requires
estimating parameters in the DDM for individual
participants. For the purpose of comparison, we
estimated parameters of both pure and extended
models.

There are at least two tenable approaches to
estimating the parameters of the DDM: (a) Fit a
separate DDM to each participant and delay con-
dition, or (b) assume that certain parameters (e.g.,
the nondecision part of reaction time, T0) do not
vary across conditions for a given participant and
fit the DDM with the constraint that these fixed
parameters are constant across conditions. If the
assumption of the approach (b) is correct, then
this more constrained approach will give better
estimates of parameters. Therefore, we first esti-
mated the parameters of the pure DDM using
the unconstrained method (a) and identified
those parameters that did not differ systematically
across conditions; we then treated these as fixed
parameters using the more constrained method
(b), as described below.

For each participant and condition we used the
unconstrained method to estimate the following
parameters: nondecision time T0, signal to noise
ratio ã, and decision threshold z̃ (divided by drift
rate).6

Following Ratcliff and Tuerlinckx (2002), we
divide the RT distribution into five quantiles (in
units of seconds)—0.1, 0.3, 0.5, 0.7, 0.9—and
denote these by RTq

th and RTq
ex for the pure

DDM (theory) and data (experiment), respect-
ively. For the moment, we do not distinguish
between the distribution for correct and error
trials, because for the pure DDM with fixed drift
rate and initial condition, as employed here, their
means are identical (Feller, 1968; we return to
the extended model later). We denote the error
rates given by the pure DDM and observed in
the experiment by ERth and ERex, respectively.

The subplex optimization algorithm (Rowan,
1990) was used to find parameters minimizing
the cost function describing the weighted differ-
ence between ERs and RT distributions of the
model and from the experiment (Ratcliff &
Tuerlinckx, 2002):

Cost ¼ wER(ERth
� ERex)2

þ
X5

q¼1

wRT,q(RTth
q � RTex

q )2: ð14Þ

In the above equation, ws denote the weights of
the fitted statistics. We choose the weight of a
given statistic close to 1/(the estimated variance
of this experimental statistic), as proposed by
Bogacz and Cohen (2004). In particular we take:
wER ¼ n/[ERav(1 2 ERav)] and wRT,q ¼ n/
RTq

av, where ERav and RTq
av are ERex and RTq

ex,
averaged across all delay conditions.7 This aver-
aging across conditions is done to avoid dividing
by 0 in blocks in which the participant did not
make any errors and also because the differences

6 We estimate the ratios ã and z̃ rather than the original parameters of the DDM A, c, and z, because it is not possible to estimate A, c,

and z uniquely (see section “Drift diffusion model”). One could also fit different ratios (e.g., A/c and z/c), but we use ã and z̃ for con-

sistency with the theoretical treatment, in which these ratios best simplified the mathematical analysis. Although we estimate z̃ (¼ z/A)

rather than z, we will still be able to determine whether a participant chooses the optimal threshold zo: Recall that Equation (5) implies

that the optimal normalized threshold z̃o ¼ zo/A, thus if the estimated z̃ is equal to z̃o, this also implies that z ¼ zo.
7 The variance of ER can be estimated as follows: Assume, for a given condition, that a participant has a probability of making an

error equal to pe, and there are n trials in this condition. Then the experimental error rate ERex comes from the binomial distribution

with mean pe and variance pe(1 2 pe)/n. For simplicity we estimate pe as ERav. The variance of RTq
ex can be estimated using a

method proposed by Maritz and Jarrett (1978), but here for simplicity we assume that this variance is proportional to the mean

of RTq
ex and inversely proportional to n, and thus we simply take wRT,q ¼ n/RTq

av.
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in ERex and RTq
ex across conditions for single par-

ticipants are small in comparison to differences
between participants.

Using the unconstrained method described
above, we fitted the pure DDM to all conditions
of all 20 participants. The ANOVA did not
reveal significant differences in either T0,
F(3) ¼ 0.7, p ¼ .55, or ã, F(3) ¼ 0.92, p ¼ .44,
between delay conditions. To further investigate
the differences in T0 and ã between delay con-
ditions, we performed paired t tests between all
pairs of conditions, and none of the tests was sig-
nificant (p . .1 for all tests). Therefore, in the
constrained estimation method we assumed that
a given participant has the same T0 and ã for all
conditions. Accordingly, for a given participant
we estimated six parameters: nondecision time
T0, signal to noise ratio ã, and four normalized
decision thresholds z̃ (one for each of the four
delay conditions). We found parameters minimiz-
ing the following cost function (analogous to that
of Equation (14)).

Cost ¼
X4

d¼1

 
wER(ERth

d � ERex
d )2

þ
X5

q¼1

wRT,q(RTth
d ,q � RTex

d ,q)2

!
: ð15Þ

In the above equation ER and RT denote the error
rates and reaction time indexed additionally by the
delay conditions. The parameters of the pure
DDM found in this way were used in the analyses
in the following sections.

To estimate parameters of the extended DDM
from the data we used the DMAT toolbox
(Vandekerckhove & Tuerlinckx, 2007), which
finds parameters that maximize a (multinomial)
likelihood function (Ratcliff & Tuerlinckx,
2002). In fitting the extended DDM we followed
our treatment of the pure DDM by constraining
all parameters except the decision threshold to

be constant across conditions for any given
participant.

Fits of the DDM
Figure 3 compares the fits of the pure and the
extended DDMs to data from a representative
participant (see caption for the explanation of the
quintile probability plots). This participant pro-
duced different RTs for error and correct trials
(note that open circles are in different positions
in the left and right parts of the panels). As
could be expected this difference was captured by
the extended DDM, but not by the pure DDM,
which always produces the same RT distribution
for error and correct trials (note that lines in
Figure 3a are symmetric). Nevertheless, the pure
DDM was able to capture the speed–accuracy
trade-off produced by the participant: Note that
the lines in the right part of Figure 3a are increas-
ing, which indicates that as the accuracy increases,
the RT also increases. Thus, the pure DDM was
able to fit quite well this trade-off on correct
trials (constituting a great majority of trials).

As could be expected, across the participants,
there was a strong correlation between the par-
ameter values estimated by fitting the pure
DDM and the corresponding parameters esti-
mated by fitting the extended DDM, as shown
in Figure 4 (for T0, r ¼ .67; for ã, r ¼ .61; for z̃,
r ¼ .92). Such strong correlations have been
reported before (Wagenmakers, van der Maas, &
Grasman, 2007). Nevertheless, Figure 4 also
shows that there are systematic differences
between parameters—namely, the pure DDM
underestimates ã and overestimates z̃, in agree-
ment with observations of Wagenmakers et al.
(2007).8 Overall, however, our findings suggest
that the simpler pure DDM is a useful tool in
the analysis of the speed–accuracy trade-off.

Decision thresholds
Prediction z ¼ zo. This is tested in Figure 5, which
compares the estimated values of participants’

8 Wagenmakers et al. (2007) fitted DDMs with an assumption that parameter c is fixed. They observed that the pure DDM

underestimates parameter A in comparison to the extended model. Since the definitions of ã and z̃ involve ratios of A (see Equation

(5)), it implies that the pure DDM underestimates ã (proportional to A2) and overestimates z̃ (inversely proportional to A).
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Figure 3. Quantile probability plots showing the fits of the pure (a) and the extended (b) drift diffusion model (DDM) to behavioural data

from a sample participant. Open circles correspond to the behavioural data. The horizontal axes indicate the probability of error in the left parts

of the panels, and probability of correct choice in the right parts (see labels on x-axes). In each part, the four columns of circles correspond to the

four delay conditions in the experiment. In each column of circles, the vertical positions of the five circles indicate the quantiles of reaction times.

Small filled circles visualize the corresponding predictions for the DDM. These are connected by lines to make the patterns they create more

visible. For clarity, error bars with confidence intervals for quantiles of reaction times are not shown here. They are plotted for the same

participant in Figure 5 of Bogacz et al. (2006), which shows that the confidence intervals are very large for the error trials (up to 1.48 s

for the 0.9 quantile in D ¼ 0.5, Dp ¼ 1.5 condition) because of the small number of such trials. The estimated parameters of the models

(for noise parameter fixed at c ¼ 0.1) are: (a) pure DDM: T0 ¼ 0.346, A ¼ 0.219, z1 ¼ 0.0398, z2 ¼ 0.0535, z3 ¼ 0.0610,

z4 ¼ 0.0682; (b) extended DDM: T0 ¼ 0.372, st ¼ 0.084, mA ¼ 0.344, sA ¼ 0.152, sx ¼ 0.044, z1 ¼ 0.0503, z2 ¼ 0.0592,

z3 ¼ 0.0687, z4 ¼ 0.0816.

Figure 4. Comparison of parameters T0, ã, and z̃ estimated by fitting pure (vertical axes) and extended (horizontal axes) drift diffusion

model. In the left and the central panels dots correspond to individual participants; in the right panel different experimental delay

conditions are indicated by different symbols (see legend).
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Figure 5. Comparison of participants’ and optimal thresholds in Experiment 1. The left column of panels (a, c, e) compares estimates and

predictions of the pure drift diffusion model (DDM), while the right column of panels (b, d, f) compares estimates and predictions of the

extended DDM. In Panels a–d, horizontal axes correspond to participants’ normalized thresholds, the optimal normalized thresholds are

along the vertical axes, and the dotted line is the identity line. Different experimental delay conditions are indicated by different symbols

(see legend). Note different scales between rows of panels. Panels a and b show a sample participant with the best fit; Panels c and d

show data of all 20 participants. Panels e and f show the mean participants’ (black bars) and optimal (white bars) thresholds averaged

across participants for different delay conditions (indicated on the horizontal axis). Error bars show standard error (there are error bars

on bars corresponding to optimal thresholds, because different participants have different optimal thresholds). Asterisks indicate the level of

significance of the difference between participants’ and optimal thresholds (paired t test): �p , .05, � �p , .01, �� �p , .001.
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thresholds (estimated from the DDM) with the
optimal ones (found as described in the section
“Reward rate maximization”), for the pure and
extended DDM.

Figures 5a and 5b show data for a sample par-
ticipant, whose thresholds are very close to the
optimum values. To quantify the similarity
between the normalized participant’s and optimal
thresholds, we do not use Pearson’s correlation as
it can give high values even if the mean of one
set of thresholds is higher than that of another
(as long as there is a linear relationship between
them). Thus to test the prediction z ¼ zo

Appendix B defines a correlation measure r1 that
assumes that the two sets of thresholds have the
same mean. In Figures 5a and 5b these correlations
are for the pure DDM, r1 ¼ .89 (p ¼ .07), and for
the extended DDM, r1 ¼ .87 (p ¼ .09).9

Figures 5c and 5d show the data for all 20
participants. While not all participants set their
thresholds close to the optimal values, nevertheless
there is a strong correlation between normalized
participants’ and optimal thresholds for the pure
DDM, r1 ¼ .44 (p , 1025), and for the extended
DDM, r1 ¼ .62, (p , 1025).10

Figures 5e and 5f compare the participants’
and optimal normalized thresholds for the four
delay conditions, each averaged across all 20
participants. On average, participants appear to
set their thresholds higher than the optimal
values, an effect that is significant in the short
delay conditions (D ¼ 0.5 s and D ¼ 1 s) for the
pure DDM and in all conditions for the extended
DDM.

Comparing the left and right columns of panels
in Figure 5 suggests that fitting the pure and the
extended DDM reveals very similar relationships
between the participants’ and optimal thresholds.

This similarity can be traced to the strong corre-
lation between those parameter values estimated
by fitting the pure DDM and those estimated by
fitting the extended DDM (Figure 4).

In summary, while the optimal threshold theory
explains a significant proportion of the variance in
participants’ thresholds, on average they tend to set
their thresholds to values higher than optimal
for maximizing RR—especially in the short delay
conditions. We return to this observation below.

EXPERIMENT 2

Method

Participants
These were 60 adults (30 males and 30 females). In
addition to payments described in the “General
method” section, participants were also paid $8
for participation. Participants in Experiment 2
did not take part in Experiment 1.

Stimuli and apparatus
Experiment 2 used the same stimuli as those that
were used in a previous study of the DDM by
Ratcliff et al. (1999). Participants were presented
with a 10 � 10 grid in the upper left corner of a
VGA monitor, subtending a visual angle of 4.308
horizontally and 7.208 vertically. Random cells
within the grid were filled with asterisks; others
were empty. On each trial, participants had to
decide whether the majority of locations in the
grid were empty or filled with asterisks. The grid
and asterisks appeared as light characters against
a dark background, were presented with high
brightness and contrast, and were clearly visible.
The VGA monitors were driven by a PC

9 Note that since we found no significant differences in signal to noise ratios across conditions within participants (see the section

“Estimating parameters of the DDM”), it is reasonable to assume that drift A is also the same in all delay conditions, and all

thresholds in Figure 5a are therefore normalized by the same value of drift. The plot comparing non-normalized thresholds of

this participant with non-normalized optimal thresholds would look exactly the same as Figure 5a, but both scales of the axes

would be divided by the value of the drift. So the non-normalized thresholds of this participant are also very close to the optimal

values (and there is the same correlation, r1 ¼ .89, between the participants’ and optimal non-normalized thresholds).
10 Note, however, that this does not imply that there is equal correlation between non-normalized participants’ and optimal

thresholds, because Figure 5c includes data from all participants, and each participant has thresholds normalized by a different

value of drift; unfortunately it is more difficult to say what the correlation would be between the non-normalized thresholds.

876 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2010, 63 (5)

BOGACZ ET AL.

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
0:

47
 0

5 
Fe

br
ua

ry
 2

01
4 



computer, and the stimuli were displayed using the
Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997). The number of displayed aster-
isks was either 40 or 60 during blocks referred to as
easy, and 47 or 53 during blocks referred to as
difficult.

Procedure
Participants had to indicate their choices by press-
ing the “M” or “Z” key on a standard keyboard,
and the mapping of keys to the “low” and “high”
responses was counterbalanced across participants.
The score was continuously displayed in the centre
of the screen. In the first series of 20 participants,
some participants held one of the buttons down
continuously on some blocks of trials (which
resulted in RT ¼ 0, and ER close to 50%). To
prevent such behaviour, the remaining participants
were required to release both buttons in order to
initiate the next trial.

Design
The experiment consisted of 10 blocks lasting
4 min each. For each delay condition there was
an easy block and a difficult block, except for con-
dition D ¼ 2 s for which there were four blocks
(two easy and two difficult) to collect a sufficient
number of trials for analysis.

Results

Behavioural results
A two-way ANOVA (Delay � Difficulty) revealed
that ER was significantly influenced by difficulty,
F(1) ¼ 103, p , 1024, and delay, F(3) ¼ 3.79,
p ¼ .01, but not by their interaction, F(3) ¼ 0.67,
p ¼ .55. Similarly, RT was significantly influenced
by both difficulty, F(1) ¼ 870, p , 1024, and delay,
F(3) ¼ 9.01, p , 1024, but not by their interaction,
F(3) ¼ 0.52, p ¼ .62. Since there was no inter-
action between difficulty and delay conditions, in
order to visualize the overall effect of delays,
Figure 6 shows ER and RT averaged across diffi-
culty conditions. The behavioural data from
Experiment 2 follow the same pattern as that in
Experiment 1.

Prediction z � D. In the first three conditions
(D ¼ 0.5, D ¼ 1, D ¼ 2) longer delay was associ-
ated with lower ER and higher RT (correlation
between D and participants’ ER after subtraction
of mean ER for given participant and difficulty
condition was r ¼ –.32, p , 1024; correlation
between D and participants’ RT after subtraction
of mean RT for given participant and difficulty
condition was r ¼ .31, p , 1024). Hence, in the
first three conditions (D ¼ 0.5, D ¼ 1, D ¼ 2)
the longer the delay, the higher threshold partici-
pants chose, in agreement with prediction z � D.

Prediction z(D þ Dp). To test the prediction that
participants should choose the same threshold in
Delay Conditions 3 (D ¼ 2 s) and 4 (D ¼ 0.5 s,
Dp ¼ 1.5 s), we compared the ER and RT
between these conditions. ER did not differ
significantly, t(119) ¼ 0.43, p ¼ .66, but RT did
significantly differ between these conditions,
t(119) ¼ 2.88, p ¼ .005. The latter finding (for
RT) is not consistent with prediction z(D þ Dp).
However, as discussed below, this prediction was

Figure 6. Mean error rate and mean reaction time (in seconds) for

all 60 participants in Experiment 2 for each delay condition

averaged across difficulty conditions. The height of the error bars

corresponds to standard error of the differences between ERs (or

RTs in Panel b) in the two conditions. Specifically, the difference

is first calculated for each participant, and then the standard error

of the differences is calculated across participants; both error bars

are equal to this standard error, so they have equal heights. These

error bars have standard interpretation: If two adjacent bars are

different from each other by more than approximately two heights

of corresponding error bars, then ERs (or RTs) are significantly

different according to the paired t test.
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largely satisfied for a subset of the best performing
participants.

Estimating parameters of the DDM
We only fit the pure DDM to the data from
Experiment 2 because the data were too few to
constrain the extended DDM (involving three
more parameters); there were fewer trials per con-
dition in Experiment 2 than in Experiment 1
(4 min instead of 7 min). More importantly,
many participants made very few or no errors in
the easy conditions of Experiment 2, and infor-
mation on RT distribution on error trials is necess-
ary to accurately estimate the parameters of the
extended DDM. We note, however, that the
pure and extended DDM produced highly-corre-
lated parameters (Figure 4), and they provided
similar information on the relationship of partici-
pants’ and optimal thresholds (observed in
Figure 5). Hence we feel that it is worthwhile to
use the pure DDM in the analysis of threshold
setting in Experiment 2.

The parameters of the pure DDM were esti-
mated using the same method as that in
Experiment 1. Namely, for every participant and
difficulty condition we estimated: T0, ã, and four
normalized decision thresholds z̃ (different values
of both T0 and ã were estimated for each level of
difficulty since these parameters differed signifi-
cantly between difficulty conditions).

Decision thresholds
Prediction z ¼ zo. Figures 7a and 7b compare the
estimated values of participants’ normalized
thresholds with the optimal ones. The correlation
between the participants’ and the optimal normal-
ized thresholds is r1 ¼ .67 (p , 1025) in the easy
condition, and r1 ¼ .25 (p ¼ 1024) in the difficult
condition.

Figures 7c and 7d compare the participants’ and
the optimal normalized thresholds averaged across
all 60 participants. Again, participants tend to set
their thresholds to higher than optimal values.
The difference between participants’ and optimal
thresholds is significant in all conditions, except
the easy condition in Delay Condition 4 (D ¼ 0.5,
Dp ¼ 1.5).

Overall, the optimal threshold theory explains a
significant proportion of variance in participants’
thresholds, but participants consistently set their
thresholds higher than the optimal values.

Performance of participants with high reward
scores
The match of empirical results to theory in
Experiments 1 and 2 was short of perfect. Here,
we explore factors that may have influenced
how closely participants set their thresholds to
the optimal value. We focus on the results of
Experiment 2, for which there were enough
participants to conduct reliable analyses.

To quantify the match between participants’
thresholds and the theory, for each participant
we compute a theory match error defined as the
Euclidian distance between the participant’s
thresholds in the eight conditions of Experiment
2 and the optimal thresholds for those conditions:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX8

i¼1

(~zi � ~zo,i)
2

vuut : ð16Þ

We found that this measure was not correlated
with participants’ responses to any of the questions
in the debriefing questionnaire. However, it was
strongly correlated (r ¼ –.71) with reward score
(total amount of money earned), as shown in
Figure 8a. This may not seem surprising: The
theory identifies thresholds that maximize RR,
and so those participants who approximate these
thresholds should be expected to earn the highest
rewards. The theory match error of Equation
(16) was weakly dependent on gender, two-tailed
unpaired t test, t(58) ¼ 2.13, p , .04—that is, on
average males chose thresholds closer to values
maximizing RR than did females. We come back
to a possible interpretation of this dependence in
the General Discussion.

Let us now examine whether the performance
of those participants who achieved reward scores
above the median satisfies predictions z(D þ Dp)
and z ¼ zo that were not satisfied when all partici-
pants were considered.
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Prediction z(D þ Dp). Figures 8b and 8c show the
resulting ER and RT for each delay condition
averaged over this subset of participants. Paired
t tests showed that ER and RT did not

differ significantly between Delay Conditions
3 (D ¼ 2 s) and 4 (D ¼ 0.5 s, Dp ¼ 1.5 s):
ER, t(57) ¼ 0.32, p ¼ .75; RT, t(57) ¼ 0.16,
p ¼ .87.11 These findings are consistent with

Figure 7. Comparison of participants’ and optimal thresholds in Experiment 2. Left panels (a and c) show findings for the easy condition,

right panels (b and d) for the difficult condition. In Panels a and b, participants’ normalized thresholds are shown on horizontal axes, optimal

normalized thresholds are shown on the vertical axes, and the dotted line is the identity line. Different experimental delay conditions are

indicated by different shapes (see legend). Note different scales. Panels c and d show the mean participants’ (black bars) and optimal

(white bars) thresholds averaged across participants for different delay conditions (indicated on the horizontal axis). Error bars show

standard error, and asterisks indicate the level of significance of the difference between participants’ and optimal thresholds (paired t test):
�p , .05, � �p , .01, � � �p , .001.

11 However, both ER and DT did vary significantly for all other pairwise comparisons between conditions, with p ranging from

p ¼ .018 to p , 1024 (without correcting for multiple comparisons).

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2010, 63 (5) 879

SPEED –ACCURACY TRADE-OFF

D
ow

nl
oa

de
d 

by
 [

th
e 

B
od

le
ia

n 
L

ib
ra

ri
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
O

xf
or

d]
 a

t 0
0:

47
 0

5 
Fe

br
ua

ry
 2

01
4 



predictions of the optimal threshold theory:
Threshold should only depend on D þ Dp.

Prediction z ¼ zo. Figures 8d and 8e show the
mean (normalized) participants’ and optimal

thresholds, averaged across the same set of partici-
pants, for the easy and difficult conditions. In the
easy condition, the mean participants’ threshold
does not differ significantly from optimal in any
of the delay conditions (Figure 8d). In the difficult

Figure 8. Performance of participants with reward scores higher than the median reward score for Experiment 2. (a) Relationship between

theory match error (x-axis) and achieved reward score (y-axis). Each symbol corresponds to one participant; genders are as indicated in key. (b,

c) Mean error rate and reaction time (in units of seconds) averaged across difficulty conditions. The height of the error bars corresponds to

standard error of the differences between ERs (or RTs in Panel b) in the two conditions. Specifically, the difference is first calculated for

each participant, and then the standard error of the differences is calculated across participants; both error bars are equal to this standard

error, so they have equal heights. These error bars have standard interpretation: If two adjacent bars are different from each other by

more than approximately two heights of corresponding error bars, then ERs (or RTs) are significantly different according to the paired t

test. (d, e) mean participants’ (black bars) and optimal (white bars) normalized thresholds averaged across participants for different delay

conditions (indicated on the horizontal axis). Panel d shows data for easy conditions, Panel e for difficult conditions. Error bars show

standard error, and asterisks indicate the level of significance of the difference between participants’ and optimal thresholds (paired t test):
�p , .05, � �p , .01, � � �p , .001.
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condition, the mean participants’ threshold is sig-
nificantly different from optimal only in delay con-
dition D ¼ 0.5 (Figure 8e). Thus, participants
with higher reward scores set their thresholds
much closer to the optimal value than do other
participants (compare with Figures 7c and 7d).

Empirical test of relationships between
ER and DT

Relationship predicted by maximization of RR
Prediction DT(ER). This describes the relationship
between ER and DT that holds for optimal per-
formance across various task parameters. Here
we examine how well this relationship describes
actual human performance. The relationship is
expressed in Equation (10), which relates ERs
to the normalized DT (i.e., DT as a fraction of
Dtotal). Therefore, for both experiments, we
calculated the normalized DT for each participant
in each task condition as: (RT 2 T0)/Dtotal,
where RT was the participant’s mean for that
condition, and T0 was the nondecision part of
the RT estimated for that participant from the
pure DDM as described earlier. Each of these
normalized DTs was associated with a correspond-
ing ER for that participant in that condition.
Figure 9a plots DTs from all experimental con-
ditions as a function of ER for a sample participant
whose DTs lie in the vicinity of values predicted by
the optimal performance curve (see black curve in
Figure 9a).

For the majority of participants, however, the
match between the normalized DT and the
optimal performance curve is not as good as that
shown in Figure 9a. For each participant of
Experiment 2, we computed the correlation
between the normalized DTs for eight experimen-
tal conditions and the normalized DT predicted by
the optimal performance curve. Figure 9b shows
the histogram of these correlations. Although
these correlations are usually positive, they are
statistically significant only for 12 participants.

To evaluate how well the optimal performance
curve describes the data averaged across partici-
pants, we divided the possible range of ER (0–
50%) into 10 equal intervals and, for each interval,
calculated the mean normalized DT over all par-
ticipants and conditions with ERs falling into
that interval. The results of this analysis are
shown in Figure 9c. Participants’ mean normalized
DTs are higher than those predicted by the
optimal performance curve for RR (black curve
in Figure 9c). This is consistent with the results
of the analyses in the section “Decision thresholds”
(see Figures 5e, 5f, 7c, and 7d) indicating that, in
aggregate, participants set their thresholds higher
than is optimal to earn maximum reward. Note,
however, that the predicted relationship provides
a good qualitative description of the relationship
between ER and DT. In addition to showing the
same inverted-U shape, participants have the
highest normalized DT for blocks in which their
ERs range from 15% to 20%, bracketing the
predicted value of 18%.

As demonstrated above, there is a strong corre-
lation between participants’ reward scores and how
closely their thresholds match the theoretical
optima. Therefore, we compared the optimal per-
formance curves with the data from participants
with different levels of reward score separately.
In particular, some participants with the lowest
reward scores had DTs an order of magnitude
higher than other participants, and thus we separ-
ately analysed the 10% of participants with the
lowest RRs12 (their DTs are shown in the right
panel of Figure 9d). We split the remaining 90%
of participants into three equal groups according
to RR, but there was no significant difference
in normalized DTs between the 30–60% and
60–90% groups (paired t test across 10 bins of
ER: p . .2); hence we pooled the data from
these groups (constituting the middle 60% of
participants). The normalized DTs for the
remaining top 30% group and the middle 60%
group are shown in the left and middle panels of
Figure 9d.

12 These were 2 participants from Experiment 1 and 6 participants from Experiment 2.
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Figure 9. Optimal performance curves. In all panels except b, horizontal axes show the error rate (ER), and vertical axes show the normalized

decision time (DT)—that is, DT divided by total delay Dtotal. Note the differences in scales between panels. Solid black curves show the

theoretical prediction based on the assumption that participants maximize the reward rate. (a) Normalized DTs as a function for ER

plotted for one participant of Experiment 2. Each circle corresponds to one experimental condition. For two conditions the normalized

DTs and ERs were very close, so two circles overlap (in the bottom right corner of the panel). (b) Histogram of the correlations between

normalized DT and the normalized DT predicted by the optimal performance curve. Each correlation is calculated for one participant of

Experiment 2. Shaded bars indicate the correlations that were statistically significant (p , .05). In Panels c–e, the bars show the mean

normalized DT averaged across participants’ conditions with ERs falling into the given interval (from Experiments 1 and 2). The error

bars indicate standard error. There are no error bars for some bins, as there was just one condition falling into this bin, or DTs for

participants’ conditions falling into this bin were all very close to 0. (c) The bars are based on all participants. (d) The participants are

divided into three groups on the basis of their reward scores, and bars in each of the three panels are based on the data from the

corresponding group of participants (see titles of the panels). (e) Data from conditions with Dp ¼ 0 based on subgroups of participants as

in Panel d. Best fitting optimal performance curves for RA (weighted difference between RR, reward rate, and ER, error rate) and RRm

(modified RR) are also shown (see legend).
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The left panel of Figure 9d indicates that the
predictions of the optimal performance curve for
RR match the data from the participants with
reward scores in the top 30% quantitatively, and
indeed their performance is statistically indistin-
guishable from the theoretical predictions except
at one ER interval.13 The other two groups of par-
ticipants (middle 60% and bottom 10%) shown in
Figure 9d have significantly higher normalized
DTs than those predicted by RR maximization.

Relationships predicted by maximization
of RA and RRm

We investigated whether the optimal performance
curves predicted by maximization of the RA and
RRm criteria (combining RR and accuracy) can
quantitatively capture the relationship between
the ER and DT of the middle 60% and the
bottom 10% of participants. Both performance
curves include a free parameter q describing the
emphasis placed on accuracy. For both curves, q
was estimated via the maximum likelihood
method, using the standard assumption that nor-
malized DTs are normally distributed around the
performance curve being fitted with a variance
estimated from the data. Additionally, in fitting
the curve for RA, we constrained q � 1.096, and
in fitting the curve for RRm we constrained
q � 1 (see Appendix A). The values of estimated
parameters are given in Table 2. Note that the
groups of participants with lower performance
have higher estimated values of q, which could
be interpreted as greater emphasis on accuracy.

Figure 9e shows the best fitting performance
curves for the three groups of participants. Both
performance curves for RA and those for RRm

are able to describe the DTs of the middle 60%
of participants. In case of the bottom 10%, the
curve for RA fits the data better than the curve
for RRm, as the latter predicts that the longest

normalized DT should be obtained for higher
ERs, which is inconsistent with the data. These
observations are quantified in Table 3, which
lists the ratios of the likelihoods of the data
given different curves. The first row shows that
the data from each group of participants are
more likely given the curve for RA than given
the curve for RRm; in particular the data from
the bottom 10% are more than 43 times more
likely given RA than RRm curves. Table 3 also
shows that the curves for RA and RRm provide
much better fit to the data than the curve for RR
for the bottom 70% of participants.

In summary, although the relationship between
ER and normalized DTs observed in the exper-
iments for the middle and the bottom groups of
participants cannot be described quantitatively by
the optimal performance curve for RR, it can be
described by the performance curve based on the
assumption that participants maximize RA—that
is, the weighted difference between RR and ER.
This suggests that the “conservatism” of these
participants may reflect a greater emphasis on
accuracy than is optimal for maximizing reward
rate. In the General Discussion we consider an
alternative account of this apparent emphasis on
accuracy.

Table 2. Estimated values of parameter q of the optimal

performance curves for RA and RRm for three groups of participants

sorted by reward score

Participants

Criterion Top 30% Middle 60% Bottom 10%

RA 0.15 0.55 1.096

RRm 0.14 0.49 0.98

Note: q ¼ relative weight of accuracy. RA ¼ weighted differ-

ence between RR and ER. RR ¼ reward rate. ER ¼ error

rate. RRm ¼ modified RR.

13 For each participant and condition we took the empirically observed ER and used Equation (18) in (see Appendix A) to

calculate the theoretically predicted optimal normalized DT. Then, for each of the ER intervals, we used paired t tests to

compare the distribution of experimentally observed mean normalized DTs with the distribution of predicted values. The difference

was significant only in the first ER interval [0–5%], p ¼ .003, and nonsignificant, p . .05 for all other ER intervals). The reason

for the difference in the interval with the highest ER may be that the first interval contained many blocks with ER ¼ 0, and

Equation (18) predicts that for these blocks DT ¼ 0, but participants had DT . 0.
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Adjustments in decision thresholds

In this brief section we investigate how quickly
participants adjust their thresholds after block
onset. Maximization of RR requires higher
decision thresholds for longer D, and to visualize
how participants adjust thresholds depending on
D, Figure 10 shows differences between RTs in
conditions D ¼ 2 and D ¼ 0.5. These differences
are averaged over 5 trials in a given bin, over all
blocks, and over all participants of Experiments 1
and 2. Figure 10a shows that RT differences
develop and stabilize within the first �20 trials
for participants with reward scores above the

median. RT differences for the remaining partici-
pants are shown in Figure 10b, but unfortunately
the data are too noisy to identify when they stabil-
ize. We return to the issue of learning decision
thresholds in the General Discussion.

GENERAL DISCUSSION

Summary of results

In the introduction we stated four predictions that
should be satisfied if participants select thresholds
maximizing RR. We performed two experiments
testing these predictions. The support provided
by experimental data for our predictions is sum-
marized in Table 4. In general, the predictions
were only partially consistent with the data from
all participants, but virtually all of them were sat-
isfied by data from the participants with highest
reward scores.

Prediction z � D. The prediction that the increase
in response–stimulus interval D should increase
the decision threshold, and thus decrease ER and
increase RT, was satisfied in the behavioural data
averaged over all participants in both experiments.

Prediction z(D þ Dp). The prediction that the
threshold (and thus ER and RT) should depend
only on D þ Dp, rather than D and Dp individu-
ally, was not satisfied in the behavioural data aver-
aged over all participants. However, the prediction

Table 3. Ratios of the likelihoods of experimental data given the pairs of criteria for groups of participants

Participants

Criteria compared Top 30% Middle 60% Bottom 10% All

RA/RRm 1.15 4.78 43.16 237.25

RA/RR 42.65 (15.69) .1020 .105 .1026

RRm/RR 36.98 (13.60) .1020 .104 .1025

Note: RA ¼ weighted difference between RR and ER. RR ¼ reward rate. ER ¼ error rate. RRm ¼ modified RR.

To account for the fact that the performance curves for RA and RRm have one free parameter, and the curve for

RR does not, the bottom two rows include in parentheses the ratio of the likelihood of the data given the two

curves divided by exp(1), as suggested by Akaike (1981).

Figure 10. Changes in participants’ performance within single

blocks of trials. In all panels horizontal axes show the trial

number within a block—each point corresponds to a bin of 5

trials. Vertical axis shows the difference in the mean reaction time

(RT) between delay condition D ¼ 2, and D ¼ 0.5 averaged

over 5 trials in a given bin and both difficulty conditions. Error

bars indicate standard error. Panel a shows data averaged across

participants of Experiments 1 and 2 with reward scores higher

than the median for each of experiment, and Panel b shows data

averaged across participants with reward scores lower than the

median.
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was satisfied in the data averaged over the partici-
pants with reward score higher than the median.

Prediction z ¼ zo. The prediction that the
threshold estimated from fitting the DDM
should be equal to the optimal threshold was
only partially satisfied by the data from all partici-
pants. There was a significant correlation between
the participants’ and optimal thresholds, but in
each of the experimental conditions the average
participants’ thresholds were higher than
optimal. However, the estimated thresholds of
participants of Experiment 2 with reward scores
higher than the median were not significantly
different from the optimal thresholds in seven
out of eight experimental conditions.

Prediction DT(ER). The predicted relationship
between DT and ER was only qualitatively satis-
fied by the experimental data from all participants,
for whom the experimental DTs were higher than
optimal. However, the data from the top 30%
participants with highest reward scores satisfied
the predicted relationship quantitatively.

Taken together, the above results suggest that,
on average, participants set a threshold higher than
that required to maximize RR, but that a signifi-
cant proportion of participants indeed select a
speed–accuracy trade-off that approximately
maximizes RR. One could suggest how surprising
it is that the participants with highest RR follow
the predictions of our theory, since our theory
assumes RR maximization. Note, however, that
the predictions were also based on the assumption
that the choice process can be described by the

DDM. Different models of information proces-
sing during choice would require different
speed–accuracy trade-offs to maximize RR.
However, our data suggest that a significant pro-
portion of participants select a decision threshold
required by the DDM to maximize RR.

Pure drift diffusion model

It is important to note that predictions z � D,
z(D þ Dp), z ¼ zo were made within the frame-
works of both the pure and the extended DDM
while the prediction DT(ER) could only be
formulated on the basis of the pure DDM. The
fact that a significant fraction of participants con-
formed to this prediction suggests that the pure
DDM is a useful approximation of the decision
process between two alternatives.

It is interesting to ask why the predictions of
the pure DDM matched well with the behaviour
of many participants despite large systematic
differences in the parameter values estimated by
the pure and extended DDM (Figure 4). A poss-
ible reason may be that the maximization of RR
under pure and extended DDM predicts similar
speed–accuracy trade-offs for given task par-
ameters (difficulty and Dtotal) (Bogacz et al.,
2006). We have previously shown that introducing
the variability of drift slightly decreases DT
predicted for given ER, while the variability of
starting point increases the predicted DT (see
Figure 14 in Bogacz et al., 2006). Since the
effects of the two forms of variability on the pre-
dicted DT are in opposite directions, it is possible
that the speed–accuracy trade-off predicted by the

Table 4. Summary of the support for the predictions stated in the introduction in the data from Experiments 1 and 2

Prediction All participants

Participants with

highest RR

1. z increases with D Satisfied Satisfied

2. z depends on DþDp Not satisfied Satisfied

3. z ¼ zo Partially: z correlated with zo but z . zo Satisfied

4. Optimal relationship

between ER and DT

Partially: qualitative match

but DTs higher than optimal

Satisfied

Note: RR ¼ reward rate. ER ¼ error rate. DT ¼ decision time. D ¼ delay between response and next

stimulus. Dp ¼ additional penalty delay on error trials. z ¼ decision threshold. zo ¼ optimal threshold.
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extended DDM is similar to that predicted when
both forms of variability are ignored.

Relationship to other studies on selection
of speed–accuracy trade-off

A parallel study (Simen et al., in press) also tested
some of the predictions of our previous theoretical
work (Bogacz et al., 2006), but its focus was differ-
ent. It tested predictions regarding tasks in which
one of the alternatives is either more probable or
more rewarded: In such situations accuracy needs
to be sacrificed to maximize reward to an even
greater extent than in the paradigm considered
here (Bogacz et al., 2006; Maddox, 2002). Simen
et al. (in press) also tested predictions z � D and
z ¼ zo, but not predictions z(D þ Dp)

14 and
DT(ER). Furthermore, they collected substan-
tially more data from 9 individual participants,
allowing more precise fits of the extended DDM,
while here we gather fewer data from each of
many more (80) participants, allowing analysis of
factors influencing participants’ choices of decision
threshold. Importantly, the results of Simen et al.
(in press) support those of the present paper.
Specifically, Simen et al. also observed that partici-
pants’ thresholds increased with D (prediction
z � D satisfied) and found that there was a high
correlation between participants’ and optimal
thresholds, but on average participants set their
thresholds above the optimal values (prediction
z ¼ zo partially satisfied).

Edwards (1965) proposed an alternative theory
suggesting that participants choose decision
thresholds that minimize the weighted sum
RT þ qER (where q is a parameter determining
the relative weight of ER, cf. Equations (11) and
(12)). Busemeyer and Rapoport (1988) designed
an experiment in which the participants were
explicitly required to minimize this cost function
in order to maximize their rewards, and they
found that the participants chose decision
thresholds close to those minimizing this function.

Their results and ours taken together suggest that
participants are able to adjust their decision
thresholds to increase reward in various exper-
imental paradigms. Such an ability could come
from an adaptive reinforcement learning mechan-
ism aiming to maximize reward rate or reward in
any task. We return to this issue below.

Why do some participants select thresholds
higher than optimal?

We considered the possibility that some partici-
pants select thresholds higher than optimal
because they maximize a weighted combination
of RR and accuracy, and we showed that this
theory is able to predict the shape of the relation-
ship between ER and DT. This theory has been
widely applied to data from perceptual discrimi-
nation tasks in which stimuli belonging to two
classes differ on a continuous perceptual dimen-
sion (e.g., length of a line). In this context a dis-
crimination threshold corresponds to a value on
this dimension such that stimuli below and above
this value belong to two different classes. If one
of the alternatives is more rewarded, the discrimi-
nation threshold maximizing reward is different
from that maximizing accuracy. The theory that
assumes maximization of a combination of
reward and accuracy quantitatively accounts for
the discrimination threshold used by participants
and for the observed dependence of the discrimi-
nation threshold on accuracy (Maddox, 2002;
Maddox & Bohil, 1998).

Other explanations for why participants select
thresholds higher than optimal have also been
suggested. Recently Zackenhouse, Bogacz, and
Holmes (2009) investigated the assumption that
participants are unable to precisely estimate the
duration of the response–stimulus interval D and
the value of signal to noise ratio ã, and they ana-
lysed predictions of four theories proposing that
they seek to achieve performances robust to the
uncertainties in D and ã. One of these theories

14 In the experiment of Simen et al. (in press) the delays between response and the onset on the next trial were the same after

correct and incorrect responses (i.e., Dp ¼ 0) in all blocks.
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assumes that participants maximize a guaranteed
level of performance under a presumed level of
uncertainty in estimation of interval D. They
show that the data in Figure 9e can be fitted slightly
better by a performance curve based on this
assumption than the performance curve for RA.

Alternatively, thresholds higher than optimal
are also predicted under the assumption that par-
ticipants try to maximize RR using an adaptive
threshold adjustment procedure (e.g., driven by a
reinforcement learning mechanism): In previous
work we have shown that if participants do not
have a priori knowledge of the threshold that
maximizes RR, and therefore must discover this
through adaptive approximation, on average they
will achieve a higher RR by overestimation of
the optimal threshold than by underestimation.
This is based on the observation that, for the
DDM, there is a greater drop off in RR for
thresholds below the optimum than above it
(Bogacz et al., 2006). Timing uncertainty (contri-
buting to variability in reward rate estimation for a
given threshold) could further contribute to this
effect. This would force participants to optimize
a distribution of thresholds, which, for the
reasons stated above, would have a mean value
that is greater than the single optimal threshold.

Thresholds higher than optimal can also be
expected under the standard economic assumption
that the participants discount future rewards—
that is, they value a present reward more than
the same reward in the future. If so, then partici-
pants value the reward on the current trial more
than rewards on succeeding trials, and to increase
the probability of reward on the current trial,
they increase the threshold (Yakov Ben-Haim,
personal communication, July 20, 2007).
Adjudicating between these alternative hypotheses
will require further research.

Motivational effects on threshold learning

It has been demonstrated in a perceptual discrimi-
nation task that if participants receive rewards
for correct choices and no penalty for errors,
then the possibility of winning a prize for best per-
forming participants tends to move participants’

discrimination thresholds towards those maxi-
mizing reward (Markman, Baldwin, & Maddox,
2005). Thus it is possible that the reward of $100
in our experiments also encouraged participants to
set decision thresholds closer to those maximizing
RR and may partially explain why so many partici-
pants were nearly optimal.

Motivational effects of the reward for best par-
ticipants could also explain the gender effects in
Figure 8a. Namely, it is possible that the reward
of $100 in our experiments was on average more
motivating for males than females, since males
have been reported to be more motivated by com-
petition (Gneezy & Rustichini, 2004) and have a
higher tendency to gamble (Desai, Maciejewski,
Pantalon, & Potenza, 2005).

Influence of task difficulty on match between
optimal and participants’ thresholds

Figure 7 shows that there is a better match
between optimal and participants’ thresholds in
the easy task condition than in the difficult one,
and a number of speculations are possible about
why this is the case. First, for a difficult task or
long Dtotal (or for both), the optimal threshold
may be high and correspond to a firing rate of
decision neurons above the range in which their
firing rates are linear functions of input. Since
our theory is based on the simple linear DDM, it
cannot predict the value of the optimal threshold
outside of the linear range. Simple phase plane
methods show that drift rates will slow down as
firing rates exceed the linear range (Brown &
Holmes, 2001), yielding longer integration times
for a given level of accuracy. Attempting to
capture these effects with a (constant-drift)
DDM may result in the higher than optimal
threshold predictions. The analysis required to
investigate this is beyond the scope of this article.

At the same time, for a very difficult task and
short Dtotal, the optimal threshold may be very
low, corresponding to near random responding.
However, participants may feel uncomfortable
producing random responses. There may also be
a computational disadvantage in keeping the
threshold fixed near zero. If the information
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content of the input increases (e.g., the task
becomes easier), this would go undetected (since
no integration is occurring). Thus, higher level
considerations (e.g., knowledge about nonstatio-
narity of the environment) may also influence
threshold setting and drive participants to raise
thresholds above zero (at least from time to
time), providing another possible explanation for
thresholds z . zo.

It is also possible that if the task is very difficult,
participants may explore strategies other than
simple diffusion-type accumulation of infor-
mation. For example, in Experiment 2 they may
have counted the asterisks. Indeed, one participant
reported adopting such a strategy in the question-
naire: “If it is hard to identify, I will roughly count
each row.” This participant produced very long
RTs—up to 9.1 s. Two participants reported a
different change in strategy: “On the tougher
ones . . . I started looking for empty spaces
instead of stars.” A consideration of such alterna-
tive strategies is also beyond the range of this
article, although it is certainly an important
target for cognitive and neuroscientific research
and indeed has received much attention in cogni-
tive science (e.g., Newell & Simon, 1988). In any
event, the engagement of such alternative strat-
egies would of course weaken the relationship
between observed performance and that predicted
by the DDM. However, this observation does
suggest an intriguing possibility: If the DDM is
highly conserved, because of its intrinsic simplicity
and its optimality for simple decision making, then
it should provide a progressively more accurate
account of decision-making performance for
organisms that have progressively simpler cogni-
tive architectures and therefore have less access
to more complex strategies.

Learning of decision thresholds

The observation that some participants were able
to find decision thresholds close to the optimal
values raises the question of how this was accom-
plished. It is most likely that they determine the
threshold using an adaptive procedure: Different
values of threshold are set, their effect on a

criterion is observed, and the threshold is adjusted
to optimize the criterion. Several models of such
adaptation have been proposed (Erev, 1998;
Myung & Busemeyer, 1989; Simen, Cohen, &
Holmes, 2006).

Myung and Busemeyer (1989) tested the pre-
dictions of threshold adaptation models in the
experiment in which the participants were
required to minimize a weighted sum of ER and
RT. In their experiment the effects of learning
were observed on a much longer timescale than
we observed: Their analysis suggested that the
threshold was converging to the optimal value
within 100–200 trials, while we observed much
faster convergence (within �20 trials). There are
a number of factors that can contribute to this
difference. First, Myung and Busemeyer plotted
the precise threshold value on each trial (which
was allowed by their experimental design), rather
than noisy functions of thresholds, and hence
from this point of view their analysis was more
precise. On the other hand, our study generated
substantially more data: Myung and Busemeyer
calculated the value of threshold on a given trial
as the average over only 6 learning episodes for
one condition and 4 episodes for the other con-
dition. By contrast in Figure 10a we calculated
the difference in RT between delay conditions
on a given trial as the average over 700 learning
episodes (20 participants of Experiment 1 � 5
blocks þ 60 participants of Experiment 2 � 10
blocks).

Furthermore, it can be speculated that we
observed faster threshold convergence because
RR is a more ecologically relevant criterion than
the weighted sum of ER and RT and because
humans’ threshold adjustment mechanisms are
tuned to maximize RR. Recently Simen et al.
(2006) proposed such a specialized mechanism
that is able to rapidly find the threshold maximiz-
ing RR. Future work could compare the predic-
tions of different models of threshold adaptation
with experimental data.
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APPENDIX A

Optimal performance curves

Here we show how to obtain the relationship between ER and

DT that holds for thresholds that optimize RR. First, note that

Equations (6) can be solved for ã and z̃ (cf. Wagenmakers et al.,

2007):

~a ¼
1� 2ER

2DT
log

1� ER

ER

� �
, and ~z ¼

DT

1� 2ER
: ð17Þ

Substituting Equations (17) into (8) and rearranging terms, we

obtain the optimal performance curve for RR (Bogacz et al.,

2006):

DT

Dtotal
¼

1

ER lnðð1� ERÞ=ERÞ
þ

1

1� 2ER

� ��1

: ð18Þ

The curves for RA and RRm can be obtained in an analogous

way and are given by Equations (19) and (20), respectively

(Bogacz et al., 2006):

DT

Dtotal
¼

E � 2q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4q(E þ 1)

p
2q

,

where

E ¼
1

ER lnðð1� ERÞ=ERÞ
þ

1

1� 2ER
, ð19Þ

DT

Dtotal
¼ (1þ q)

1=ER� q=ð1�ERÞ

lnðð1�ERÞ=ERÞ
þ

1� q

1� 2ER

� ��1

: ð20Þ

Note that for the normalized decision time to be well defined in

Equation (19) the weight q must satisfy:

q �min
E2

4(Eþ 1)

� �
¼

E2
min

4(Emin þ 1)
: ð21Þ

Numerically, we find that the lowest value E can take is

Emin � 5.224, implying that q � 1.096 (Zackenhouse et al.,

2009). Similarly, for the normalized decision time to be

non-negative in Equation (20) the weight must satisfy

q � 1.

APPENDIX B

Correlation measure assuming
equal means

Pearson’s correlation coefficient between two samples x1,. . ., xn,

and y1,. . ., yn is calculated as:

r ¼
Av((x� Av(x))(y � Av(y)))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Av((x� Av(x))2)Av((y � Av(y))2)
q , ð22Þ

where Av denotes the average. This coefficient assumes that the

two random variables generating the samples have different

means—note that in Equation (22) Av(x) and Av(y) are

estimated separately. If we assume that the two variables have

equal means, we can estimate the mean from both sets of

samples m ¼ Av(x, y) and use it in the definition of the modi-

fied correlation coefficient:

r1 ¼
Av((x�m)(y �m))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Av((x� m)2)Av((y �m)2)
q : ð23Þ

The significance of a particular value R of r1 for a given

sample size n was found using the following Monte-Carlo

simulation. In each of 10,000 iterations, n pairs of samples

were generated from independent normal standard distri-

butions, and r1 was computed. The significance was taken

as a fraction of iterations in which jr1j. jRj (corresponding

to a two-tailed test).
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