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Abstract

It has been proposed that the error-related negativity (ERN) is generated by phase resetting of theta-band EEG

oscillations. The present research evaluates a set of analysis methods that have recently been used to provide evidence

for this hypothesis. To evaluate these methods, we apply each of them to two simulated data sets: one set that includes

theta phase resetting and a second that comprises phasic peaks embedded in EEG noise. The results indicate that the

analysis methods do not effectively distinguish between the two simulated data sets. In particular, the simulated data

set constructed from phasic peaks, though containing no synchronization of ongoing EEG activity, demonstrates

properties previously interpreted as supporting the synchronized oscillation account of the ERN. These findings

suggest that the proposed analysis methods cannot provide unambiguous evidence that the ERN is generated by phase

resetting of ongoing oscillations.

Descriptors: EEG, ERP, Synchrony, Oscillations, Phase resetting

Monitoring of ongoing performance plays an important role in

normal cognitive function: To learn from our mistakes, we must

first be able to reliably detect their occurrence. This ability to

detect our errors, and more generally to detect performance de-

teriorations and unfavorable outcomes, has been the object of

study for a number of years using both behavioral methods

(Rabbitt, 1966, 2002) and neuroimaging techniques (Botvinick,

Braver, Carter, Barch, & Cohen, 2001; Carter et al., 1998;

Falkenstein, Hohnsbein, Hoorman, & Blanke, 1990; Gehring,

Goss, Coles, Meyer, & Donchin, 1993). In particular, a good

deal of research has focused on the error-related negativity

(ERN), a component of the event-related brain potential that is

observed following incorrect responses in simple decision tasks

(Falkenstein et al., 1990; Gehring et al., 1993). The ERN is

typically found to peak within 100 ms of error commission, sug-

gesting that it may reflect the operation of a neural system for

monitoring ongoing behavior.

Competing theories variously propose that the ERN reflects

the operation of a dedicated error monitoring system

(Falkenstein et al., 1990; Gehring et al., 1993), the arrival of an

error signal at the motor system (Holroyd & Coles, 2002),

detection of conflict during response selection (Botvinick et al.,

2001; Yeung, Botvinick, & Cohen, 2004), or an emotional

response to errors (Bush, Luu, & Posner, 2000; Pailing,

Segalowitz, Dywan, & Davies, 2002; Yeung, 2004). However,

while most studies to date have focused on the question of the

functional significance of the ERN, a second debate has arisen

about the nature of neural activity that gives rise to this

component. Specifically, whereas many theories appear to

assume that the ERN is produced by a sudden phasic burst of

activity following detection of an error, Luu and Tucker (2001)

have proposed that the ERN may be produced by a reorgan-

ization of ongoing oscillatory neural activity that may begin

some time prior to incorrect responses. In previous work,

we have questioned the strength of the evidence supporting

this hypothesis (Yeung, Bogacz, Holroyd, & Cohen, 2004).

The aim of the present article is to evaluate a new set of methods

recently proposed in support of this hypothesis (Luu, Tucker, &

Makeig, 2004).

The debate about the neural basis of the ERN represents an

important test case of a wider debate about the relationship be-

tween activity in the ongoing electroencephalogram (EEG) and

activity in the averaged event-related brain potential (ERP). We

have characterized this debate as being between the classical and

synchronized oscillation theories of ERP generation (Yeung,

Bogacz et al., 2004). According to the classical view, peaks in

ERP waveforms reflect phasic bursts of activity in one or more

brain regions that are triggered by experimental events of

interest. Specifically, it is assumed that an ERP-like waveform

is evoked by each event, but that on any given trial this ERP

‘‘signal’’ is buried in ongoing EEG ‘‘noise.’’ In this context, use
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of the termEEG ‘‘noise’’ does not imply that the ongoing activity

is random or cognitively meaningless, but rather implies that this

activity is not correlated with (or time-locked to) the event of

interest. Thus defined, EEG noise will tend to average to zero

across trials, revealing ERP signals that are consistently time-

locked to the event (Coles, Gratton, & Fabiani, 1990; Coles &

Rugg, 1995; Goff, Allison, & Vaughan, 1978; Vaughan, 1969).

The classical view therefore treats the ongoing EEG as back-

ground noise that obscures the ERP signal of interest, noise that

can be dealt with through data averaging. The synchronized

oscillation hypothesisFwhich Luu and Tucker (2001) have ap-

plied to the ERNFchallenges this approach of treating ERP

waveforms as being generated independently of ongoing EEG

oscillations. Instead, the hypothesis proposes that ERP peaks are

generated when an event leads to resetting of the phase of

ongoing EEG oscillations, such that peaks and troughs in the

oscillatory waveform become alignedFthat is, time-locked to

the resetting event (BaSar, 1980; Jansen, Agarwal, Hegde, &

Boutros, 2003; Klimesch et al., 2004;Makeig et al., 2002; Sayers,

Beagley, &Henshall, 1974).When aligned in thisway, oscillatory

peaks and troughs in the ongoing EEGwill be evident in the ERP

waveform even in the absence of transient bursts of EEG activity.

According to this view, ERP waveforms may not reflect large

amplitude, phasic electrophysiological events that occur on in-

dividual trials, but may rather reflect modulations of ongoing

neural activity that become apparent as synchronized activity in

the EEG.

Various pieces of evidence have been presented on either side

of this debate (e.g., Brandt, Jansen, & Carbonari, 1991;

Klimesch, Hanslmayr, Sauseng, & Gruber, 2006; Kruglikov &

Schiff, 2003; Makeig et al., 2002; and Sayers et al., 1974, present

evidence of synchronized oscillations, whereas Cooper, Winter,

Crow, & Walter, 1965; Mäkinen, Tiitinen, & May, 2005; and

Shah et al., 2004, present evidence favoring the classical view).

Complicating the debate, there is disagreement about the prop-

erties of the EEG and averaged ERP that may be taken as

diagnostic of the presence of classical phasic peaks or synchron-

ized oscillations (e.g., see Klimesch et al., 2006; Mäkinen et al.,

2005). This issue has become particularly salient in light of recent

research using sophisticated analytic techniques to support the

synchronized oscillation hypothesis (e.g., Gruber, Klimesch,

Sauseng, & Doppelmayr, 2005; Luu & Tucker, 2001; Makeig

et al., 2002).Many of these analysismethods seek to demonstrate

dependencies of the averaged ERP on properties of the ongoing

EEG, on the assumption that such dependencies are a unique

prediction of the synchronized oscillation hypothesis. However,

as has been frequently noted (e.g., Jervis, Nichols, Johnson,

Allen, & Hudson, 1983; Mäkinen et al., 2005; Mazaheri &

Picton, 2005; Shah et al., 2004; Yeung, Bogacz et al., 2004), the

presence of classical phasic activity will tend to distort the phase

and amplitude properties of the EEG. These distortions in many

cases mimic properties that might otherwise be taken as diag-

nostic of the presence of synchronized oscillations.

We have recently used simulations of ERN data (Yeung,

Bogacz et al., 2004) to demonstrate this point in relation to some

analysis methods that have been used to support the synchron-

ized oscillation hypothesis (Luu & Tucker, 2001; Makeig et al.,

2002). In that earlier study, we applied a set of proposed analyses

to simulated EEG data that were created according to the clas-

sical view, comprising phasic peaks embedded in uncorrelated

background EEG noise. The critical finding was that our simu-

lated data, which contained no phase resetting of ongoing EEG

activity, displayed properties that had previously been interpret-

ed as evidence of synchronized oscillations. These findings sug-

gested that the methods proposed by Luu and Tucker (2001) and

Makeig et al. (2002) do not provide unambiguous evidence of the

presence of synchronized oscillations.

Since our original presentation of this research (Bogacz,

Yeung, &Holroyd, 2002; Yeung, Bogacz et al., 2004), and as part

of their ongoing research program, Luu and colleagues have

proposed an additional set of analysis methods in support of the

synchronized oscillation account of the ERN (Luu et al., 2004).

Their analyses range from straightforward visual inspection of

single-epoch EEG traces to sophisticated analyses of frequency-

specific properties of the EEG and averaged ERP. In the present

research, we develop our previously reported simulationmethods

(Yeung, Bogacz et al., 2004) in order to assess the validity of the

proposedmethods. To this end, we apply each analysismethod to

three data sets: empirical data from a study of the ERN, simu-

lated data in which the ERN is modeled as arising from syn-

chronization of ongoing EEG theta, and simulated data in which

the ERN is modeled as a ‘‘classical’’ phasic peak. More specif-

ically, in the former simulation, we modeled the ERN as arising

from phase resetting and enhancement of ongoing EEG theta

activity. The enhancementFthat is, amplitude increaseFof

theta activity captures the substantial increase in theta power at

the time of the ERN that has been observed empirically (e.g.,

Luu et al., 2004; Yeung, Bogacz et al., 2004). In the latter simu-

lation, the increase in theta power is explained in terms of the

presence of a phasic peak with significant energy in the theta

band.1

Our experimental logic is the same as in our earlier study: Of

interest is whether the analysis methods in question can effect-

ively distinguish between the competing accounts of ERP gen-

eration, as exemplified by our two simulated data sets. In this

regard, our aim is not to challenge Luu et al.’s claims that the

patterns they observe can be explained by the phase resetting

view; indeed, as will become clear below, our phase resetting

simulation validates these claims. Rather, our aim is to evaluate

Luu et al.’s stronger claim that the observed patterns can only be

explained in terms of phase resetting and cannot be explained by

the classical view. That is, of critical interest is whether findings

observed empirically (and in our phase-resetting simulation) can

also be observed in our classical peak simulation, which contains

no synchronization of ongoing oscillations. If so, then the ability

of the proposed methods to provide unambiguous evidence of

synchronized oscillations would be called into question.

Methods

Empirical Data

We reanalyzed empirical data used in our previous research

(Yeung, Bogacz et al., 2004; Yeung, Botvinick et al., 2004), taken

froman experiment inwhich 16 subjects performed a speededRT

task (Eriksen & Eriksen, 1974). The subjects produced between

31 and 99 errors each during the session (M5 60.8). Our anal-

yses focus on the resulting 973 error trials: For each error trial we
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1The observation that the ERN is associated with a large increase in
theta power rules out the possibility that this component is generated by
‘‘pure phase resetting,’’ that is, phase resetting in the absence of amplitude
modulation. This leaves us with the two possible accounts of the neural
basis of the ERNFphase resettingwith enhancement or a classical phasic
peakFthat we implemented in our parallel simulations.



extracted a response-locked EEG epoch running from 800 ms

before the response until 800 ms after. In all analyses, we dis-

carded the first and last 200 ms of each epoch to avoid contam-

ination from edge artifacts after filtering. Data were collected

from 31 electrode positions: FP1, FP2, AFz, F7, F3, Fz, F4, F8,

FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz,

CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, and O2.

Classical Peak Simulation

This simulation developed the methods introduced by Yeung,

Bogacz et al. (2004), in which EEG data are simulated by adding

phasic ERP peaks to background EEG ‘‘noise.’’ Two phasic

peaks were used: a sharp negative deflection (corresponding to

the ERN) and a positive-going slow wave (corresponding to the

Pe, a centroparietal positivity often observed to follow the ERN).

The simulated background EEG was constructed by summing

together a number of phase-randomized sinusoids, the amplitude

of which varied with frequency according to the power spectrum

of empirical EEG data. This process amounts to an inverse-

Fourier transformation with randomized phase, and is thus

effective in matching the surface features of the empirical

EEG data.

In our previous research, we used a single set of simulation

parameters to fit the entire 973-epoch data set. In the present

research, the analyses of interest included some that were applied

to single subject data. We therefore fit each individual subject’s

ERP data separately. The procedure for each subject, illustrated

in Figure 1, was as follows. Starting with the averaged ERP of a

particular subject (Figure 1a), we first identified the slow-wave

component that minimized mean squared errorFas a function

of frequency, peak latency, and amplitudeFrelative to the em-

pirical ERP across the � 600 to 1600-ms epoch (Figure 1b). We

next fit the ERN peak as a latency-jittered, half cycle of a 6-Hz

sinusoid (Figure 1c, gray lines). Latency jitter across trials results

in a peak in the averaged ERP that is of lower frequency and

lower amplitude than the phasic peaks present in individual ep-

ochs (Figure 1c, black line). The standard deviation of latency

jitter of the phasic peak, together with its peak amplitude and

mean latency, were again selected to minimize mean squared

error relative to the empirical ERP. Together, the slow-wave

component and jittered phasic peak accurately capture the prin-

cipal features of the empirical ERP data (Figure 1d).

Using this method, the data were first fit to the averaged ERP

of each subject from electrode FCz, at which the ERN is max-

imal. Across subjects, parameter values at this location for the

slow-wave component were: mean frequency5 0.9 Hz

(range5 0.7–1.3 Hz); mean peak latency5 244 ms

(range5 100–404 ms); mean amplitude5 20 mV (range5 10–

34 mV). Parameter values for the phasic peak were: mean latency

jitter5 29 ms (range5 20–40 ms); mean peak latency5 65 ms

(range5 44–92 ms); mean amplitude5 26 mV (range5 9–47

mV). Once we had fit parameters of the phasic peaks for the

averaged ERP at electrode FCz, we then generated ERP peaks

for each of the other 30 simulated electrode locations. As in our

previous research (Yeung, Bogacz et al., 2004), the simulated

scalp distribution of each component was simulated using a for-

ward model algorithm that assumes a point source for each

component (BESA 2000; www.besa.de). The phasic peak had a

midline frontocentral scalp distribution, whereas the slow-wave

component had a midline centroparietal distribution.
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Figure 1. Construction of the simulated ERP. a: Averaged ERP for one sample subject from electrode FCz. b: A slow-wave component was fit to the

empirical data to minimize mean squared error as a function of frequency, phase, and amplitude. c: In the classical peak simulation, the ERN was

modeled as a latency jittered half-cycle of a 6-Hz sinusoid. Latency jitter causes the peak evident in the averaged ERP (black line) to have lower frequency

and amplitude than the peaks present on individual trials (gray lines). d: The simple two-componentmodel provides a good fit to the empirically observed

ERP. e: The background EEG is simulated by summing together sinusoids of random phase and frequency, scaled to match the power spectrum of

empirical EEG data. f: In the phase resetting simulation, the ERN was modeled by resetting the phase and increasing the amplitude of ongoing theta

activity in the EEG. The thin black lines plot theta activity in individual epochs, inwhich a sharp phase transition and amplitude increase is apparent. The

thick black line plots the average of these individual epochs, in which the simulated ERN is clearly evident.



After simulating phasic components for 973 epochs at each

of the 31 electrode locations, we next added simulated EEG

noise. As described above, the background EEG was simulated

by summing together sinusoids of randomly varying frequency

and phase, the amplitudes of which were scaled to match

the power spectrum of empirical EEG data (Figure 1e). We

summed 50 sinusoids, ranging in frequency from 0.1 to 125 Hz,

to create each simulated EEG epoch. The maximum amplitude

of any single sinusoid (at 0.1 Hz) was 20 mV. For each subject,

we generated as many EEG epochs as there were error trials

in the empirical data for that subject. The simulated data set

therefore comprised 16 simulated ‘‘subjects’’ of data, with

31–99 (M5 60.8) EEG epochs per subject, each running from

� 800 ms to 1800 ms relative to the response. The simulated

data were subjected to identical analyses as the empirical

EEG data.

Phase Resetting Simulation

An additional simulated data set was created to implement the

synchronized oscillation account of the ERN. The methods used

in this simulation were very similar to those described above for

the classical peak simulation. The sole difference was that the

ERN was modeled by phase resetting and enhancement of on-

going theta activity in the EEG, rather than as a superimposed

peak that is independent of this ongoing activity. Each simulated

epoch thus included theta activity with initial random phase. At

around 0ms, the phase of this theta oscillationwas abruptly reset

and its amplitude sharply increased for a fixed duration (cf.

Klimesch et al., 2006; Mäkinen et al., 2005). As noted above,

theta enhancement is needed to simulate the empirically observed

increase in theta power associated with the ERN (i.e., the data

cannot be simulated accurately in terms of ‘‘pure phase reset-

ting’’; Yeung, Bogacz et al., 2004). Sample trials of theta activity

are illustrated in Figure 1f (thin black lines). Phase resetting and

enhancement leads to the alignment of large peaks and troughs

across trials, such that the averaged ERP (Figure 1f, thick black

line) is marked by a sharp negative deflection peaking at the

latency of the ERN.

The frequency of theta activity was randomly selected on each

trial to take a value from 4 to 8 Hz (mean5 6 Hz). Three other

simulation parameters were selected to maximize the fit to the

empirical EEG data at electrode FCz: mean phase resetting

latency5 32 ms (range5 20–60 ms), mean latency jitter5 25 ms

(range5 18–32 ms), and mean theta amplitude after enhance-

ment5 25 mV (range5 11–43 mV). As was the case for the

classical peak simulation, ERN-related activity was combined

with a Pe componentFwith both scaled appropriately across

the 31 simulated electrode locationsFand then combined

with (non-theta) EEG activity. Overall, the simulation com-

prised 16 ‘‘subjects’’ of data, for a total of 973 simulated EEG

epochs, each running from � 800 ms to 1800 ms relative to the

response.

Simulation and Analysis Methods

The simulated data were generated using Matlab (The Math-

works, Inc.) algorithms that are available online (http://

www.cs.bris.ac.uk/home/rafal/phasereset/). Data analyses were

performed in Matlab using EEGLab software (http://

www.sccn.ucsd.edu/eeglab) and custom algorithms. Filtering

used the EEGLab function ‘‘eegfilt,’’ implementing a two-way

least-squares finite impulse response filter with zero phase shift,

3-dB attenuation at cutoff frequencies, and 1-Hz transition

bands.

Results

Luu et al. (2004) describe a number of new analysis methods, the

results of which they interpret as favoring the hypothesis that the

ERN is generated by phase resetting of theta (4–7 Hz) activity in

medial frontal cortex. Their analyses aim to identify properties of

the EEG and averaged ERP within this frequency band that may

be taken as diagnostic of the presence of synchronized oscilla-

tions. In what follows, we apply their methods to our empirical

and simulated data sets. Our aim in doing so is to determine

whether these analysis methods are capable of distinguishing be-

tween the competing accounts of the ERN. Given this aim, the

critical question is whether properties observed in the empirical

data are uniquely observed in the phase resetting simulation, as

Luu et al.’s interpretation would predict, or whether correspond-

ing properties can also be observed in the classical peak simu-

lation (that contains no phase resetting).
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Figure 2.Averaged ERPs. Response-locked ERPwaveforms from electrode FCz for empirical data (left panel), simulated data with

theta phase resetting (middle panel), and simulated datawith a classical phasic peak (right panel). Separate waveforms are shown for

unfiltered and 4–7-Hz filtered data (gray and black lines, respectively). Scalp plots indicate the topography at the time of each of the

three negative peaks evident in the filtered waveforms.



Basic Features

Grand-averaged ERP waveforms for the empirical and simu-

lated data at electrode FCz are shown in Figure 2 (gray lines),

together with 4–7-Hz filtered waveforms (black lines). For the

empirical data, the unfiltered ERP is characterized by a sharp

negative component, peaking � 64 ms postresponse, that is

superimposed on a slow positive-going component. The negative

and positive peaks correspond to the ERN and Pe, respectively.

The low-frequency Pe component is removed by 4–7-Hz filtering

(black line), but the filtered waveform shows a clear peak

corresponding to the ERN that is maximal 68 ms after the

response. In this filtered waveform, the ERN peak is flanked by

smaller negative peaks at � 112 ms and 1252 ms. The three

negative peaks in the filtered waveform share a frontocentral

scalp topography. Comparing the raw and 4–7-Hz filtered

waveforms, it is clear that much of the power of the ERN is

concentrated at the theta frequency: The 4–7-Hz filtered wave-

form accounts for most (74%) of ERN peak amplitude in the

unfiltered waveform.

As shown in the center and right-hand panels of Figure 2, all

of these key features of the empirical data are replicated in both

the phase resetting and classical peak simulations. Given that

each simulationwas constructed tomatch the raw empirical data,

it is unsurprising that the unfiltered waveforms (gray lines) rep-

licate the empirical pattern of a sharp ERN component that is

superimposed on a slow positive-going component. It is also

unsurprising that the ERN appears as part of a sustained theta

oscillation in the filtered phase resetting simulation (Figure 2,

middle panel, black line). However, of much greater interest is

the observation that the temporal and spatial properties of theta

activity observed in the empirical data are also replicated in the

classical peak simulation (Figure 2, right panel). Thus, the

4–7-Hz filtered ERP waveform (black line) is characterized by

apparent oscillatory activity that has a peak amplitude at the

latency of the ERN (64 ms postresponse). Flanking this peak are

negativities at � 120 ms and 1244 ms that share the frontocen-

tral scalp topography of the ERN. Theta activity accounts for

most (66%) of the amplitude of the ERN evident in the unfiltered

waveform.

The presence of oscillatory features in the filtered classical

peak data may initially seem surprising, given that these data

are constructed from phasic peaks embedded in phase-random

noise. These oscillatory features are, in fact, ringing artifacts

that are created by filtering of the simulated phasic ERN peak.

The origin of these ringing artifacts is illustrated in Figure 3,

which presents a frequency-based decomposition of the

phasic peak used to simulate the ERN. As shown in Figure 3,

the phasic peak contains energy in a range of frequency bands.

Within each frequency band, there is a central peak that is

flanked by side oscillations. When summed across all frequency

bands, the side oscillations cancel to leave only the central phasic

peak.

The application of a 4–7-Hz bandpass filter, which effectively

removes activity at lower and higher frequencies, results in the

appearance of theta-frequency oscillations that begin long before

the onset of the phasic peak and continue long after its offset.

Thus, in the theta filtered component (see Figure 3), the ERN is

preceded and followed by artifactual peaks at � 88 ms (positive

peaks, 82% amplitude of the ERN), � 172 ms (negative peaks,

45% amplitude), and � 264 ms (positive peaks, 13% ampli-

tude). In this way, narrow bandpass filtering distorts the amp-

litude and latency estimates of theta activity to create the

appearance of oscillatory features where none are present in the

data (cf. Yeung, Bogacz et al., 2004). As discussed in detail be-

low, the presence of these ringing artifacts plays a key role in

explaining why our classical peak simulation, which contains no

synchronized oscillations, demonstrates properties that were

identified by Luu et al. (2004) as providing evidence that the

ERN is generated by theta phase resetting.

Theta Activity in Individual EEG Epochs

Luu et al.’s (2004) first analysis focused on qualitative features of

single-trial EEG data. According to the synchronized oscillation

hypothesis, the ERN is generated when phase-random theta ac-

tivity in the EEG becomes synchronized for a brief period. This

hypothesis predicts that error-trial EEG epochs should be char-

acterized by phase-random theta prior to the response (reflecting

ongoing EEG activity) and phase-coherent theta immediately

afterward (reflecting phase resetting of this activity).

Luu et al. (2004) found that these predictions were borne out

in a visual inspection of their empirical ERN data. Correspond-

ing patterns are evident in our empirical data, as shown in Figure

4 (left panel), which presents 10 randomly selected single-trial

epochs, with overlapping traces for unfiltered (gray lines) and

4–7-Hz filtered (black lines) epochs. Figure 4 shows that indi-

vidual EEG epochs contain appreciable theta activity prior to the

response (e.g., traces E2 and E6), but that the phase of this

activity is inconsistent across trials. However, a negative-going

EEG deflection is evident on most trials following the response.

The negative peak is clearly evident in the 4–7-Hz filtered data,

demonstrating that the ERNpresent on individual trials contains

appreciable theta power. The consistency of this peak across

trials demonstrates the phase consistency of theta power at this

time. Luu et al. suggest that these findings support the notion

that the ERN is produced by resetting of theta oscillations in the

ongoing EEG. Apparently consistent with this interpretation,

corresponding patterns are evident in our phase resetting simu-

lation (Figure 4, middle panel), in which epochs are marked by

Theta oscillations and the ERN 43

Alpha (7-12 Hz)

Theta (4-7 Hz)

Delta (0-4 Hz)

Beta (12-20 Hz)

Gamma (20-80 Hz)

Simulated ERN
peak

Figure 3. Frequency composition of the simulated classical peak. The

simulated phasic peak contains appreciable energy in a wide range of

EEG frequency bands. Oscillatory activity within each narrow frequency

range extendswell beyond the onset and offset of the original phasic peak.



phase-inconsistent theta prior to the response (e.g., traces R0,

R1, R5, R6, and R8) and a consistent negative deflection just

afterward.

However, our classical peak simulation shows comparable

patterns, despite containing no theta phase resetting (Figure 4,

right panel): Individual simulated epochs show clear evidence of

theta activity prior to the response (e.g., traces C0, C6, and C7),

but with no coherence of phase, whereas a consistent negative

deflection with appreciable theta power is present after the re-

sponse on most trials. The classical peak simulation thus repli-

cates critical properties of the empirical data. Indeed, the

simulated data accurately capture the variety of patterns of

pre- and postresponse theta activity seen in the empirical data:

traces with little theta prior to the response but a burst of theta

immediately thereafter (E0; C3), traces with higher theta prior to

the response than afterward (E6, E9; C0, C7), traces with con-

sistent theta throughout (E2, E8; C5, C6), and traces with low

theta throughout (E7; C8). Given that all of these patterns are

apparent in simulated data that contain no synchronized oscil-

lations, it follows that none of them can provide unambiguous

evidence of synchronized theta oscillations.

Various patterns are evident in the classical peak simulation

even though each epoch is constructed in the same way (by

summing together the ERP ‘‘signal’’ with randomized EEG

‘‘noise’’). The variety emerges from variability in the phase and

amplitude of theta activity in the backgroundEEG, which affects

how the background EEG summates with or cancels out the

phasic ERN peak. Thus, on some trials the phasic peak happens

to coincide with a burst of theta activity in the background EEG.

If the peak and background EEG are in phase, such that peaks

and troughs in the ongoing EEG are aligned with the phasic peak

(and, in the filtered data, with the oscillatory ringing artifact), a

large ERN peak will be apparent that will appear as part of an

ongoing theta oscillation (e.g., trace C4). Conversely, if the peak

and background EEG are out of phase, there may be no peak at

all (e.g., trace C1). On other trials, background theta activity

may be consistently low throughout the epoch, in which case the

ERNwill be evident as a sudden burst of theta energy around the

time of the response (e.g., trace C2). Background theta may

likewise be consistently high, in which case the ERN will appear

as part of a prolonged theta oscillation (e.g., trace C6). In this

way, various patterns of theta activity can result from the sum-
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mation of a time-locked phasic peak with uncorrelated back-

ground noise, and none of these patterns are diagnostic of the

presence of synchronized oscillations.

Theta Activity in Averaged ERPs

Figure 5 plots ERP waveforms created by averaging together the

10 individual EEG epochs illustrated in Figure 4. As noted by

Luu et al. (2004), the ERN peak coincides with a period

during which theta activity in individual EEG epochs is consist-

ent across trials (contrast the left panels of Figures 4 and 5).

Thus, although intermittent theta activity is evident in single

epochs prior to the response, the inconsistent phase of this

activity ensures that it tends to cancel out across trials. For this

reason, the amplitude of theta activity is low prior to the response

in the 10-trial averaged ERP. In contrast, because there is phase-

coherent theta activity immediately following the response,

theta activity is correspondingly large in the 10-trial averaged

ERP at this time. This theta activity accounts for much of the

ERN peak that is apparent in the unfiltered empirical waveform

(left panel of Figure 5, gray line). Therefore, the ERN coincides

with a period of theta phase coherence in the single-trial EEG

data. This result has been interpreted by Luu et al. (2004) as

support for the synchronized oscillation account of the ERN, a

conclusion apparently supported by the observation of corre-

sponding patterns in our phase resetting simulation (Figures 4

and 5, middle panels).

However, our classical peak simulation also replicates

the properties evident in the empirical data (Figures 4 and 5,

right panels), demonstrating that these properties are equally

consistent with the classical view of ERP generation. As

discussed previously (Jervis et al., 1983; Mäkinen et al., 2005;

Yeung, Bogacz et al., 2004), adding a phasic peak to EEG

noise is equivalent to adding phase-coherent (time-locked)

activity at all frequencies contained within the peak. The

presence of a phasic peak will therefore tend to concentrate

EEG phase toward the phase of the added peak. In the classical

peak simulation, the addition of a time-locked phasic 6-Hz

peak causes a concentration of phase (and hence a significant

ERP peak) in the theta frequency range during the period

of the ERN, without affecting or interacting with oscillatory

activity in the background EEG. That is, these simulated

data demonstrate phase consistency without phase resetting.

Thus, although it is true by definition that activity present in

the averaged ERP reflects activity in individual EEG epochs

that is (partially) phase-locked to the experimental event of

interest, it does not follow from this statement that the observed

phase coherence must be created by phase resetting of ongoing

EEG oscillations.

Total Theta and Phase-Locked Theta EEG Activity

In addition to analyzing qualitative features of EEG and ERP

data, Luu et al. (2004) performed more quantitative analyses of

theta activity related to the ERN. Their analysis again focused on

the hypothesis that the ERN is generated by increases in theta

power and theta phase synchrony. To test this hypothesis, they

calculated measures of ‘‘total theta’’ and ‘‘phase-locked theta.’’

Total theta provides a measure of the amount of theta in single-

trial EEG data, and was calculated by 4–7-Hz filtering and
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rectifying (i.e., taking the absolute value of) the data from in-

dividual EEG epochs, then averaging across trials and subjects.

Phase-locked theta provides a measure of activity that is specif-

ically time-locked to incorrect responses andwas calculated by 4–

7-Hz filtering and rectifying the averaged ERP from each subject

and then averaging across subjects. The results of these analyses

applied to our empirical data are plotted in Figure 6 (upper

left panels).

Consistent with the findings of Luu et al., our empirical data

exhibit sustained and substantial increases in total and phase-

locked theta that emerge around the time of the response and

peak shortly thereafter (at latency of the ERN). The scalloped

form of these measures reflects the partial phase consistency of

theta activity across trials. This scalloping is less evident in the

total theta measure, which is based on theta activity in individual

EEG epochs, because there is appreciable EEG theta activity that

is not strongly time-locked to the incorrect response (so that theta

activity is high even in the troughs). Critically, the measures of

total and phase-locked theta both show marked increases that

begin well before the onset of the ERN observed in the unfiltered

ERP waveform and extend well beyond its offset, suggesting that

the ERN is associated with a long-lasting increase in theta power

rather than a transient burst of activity. Luu et al. (2004) inter-

pret these patterns as evidence in support of the synchronized

oscillation account of the ERN.

Once again, however, the pattern of results seen in the em-

pirical data is replicated in both of our simulated data sets

(Figure 6, middle and right panels), suggesting that this pattern

does not distinguish between the phase resetting and classical

views. In particular, these findings challenge Luu et al.’s (2004)

conclusion that the observed pattern of empirical results uniquely

supports the synchronized oscillation account of the ERN. It is

particularly striking that total theta activity appears to increase

prior to the response in the classical peak simulation, given that

the phasic peak occurred after the response in each simulated

epoch. To explain this finding, we refer back to the point that

narrow-band filtering can produce ringing artifacts (cf. Yeung,

Bogacz et al., 2004). In the classical peak simulation, filtering of

the ERN results in artifactual ‘‘oscillations’’ that extend well

before and after the original peak (Figure 3). These ringing ar-

tifacts are reflected in a straightforward way in measures of

phase-locked theta (which are simply plots of rectified ERP

waveforms). The ringing artifacts are also present in individual

simulated EEG epochs (Figure 4, right panel), although here

they are harder to discern because they are small relative to the

amplitude of theta activity in the background EEG. These

artifacts are nevertheless present, and result in the appearance

of a sustained increase in total EEG theta activity that extends

well beyond the edges of the original phasic peak. Thus, the

observation of a sustained increase in total and phase-locked

theta does not provide unambiguous evidence that the ERN is

generated by synchronization of ongoing theta oscillations.

Although not a focus of Luu et al.’s (2004) original analysis, it

is noteworthy that they found an asymmetric increase in total

theta power in their empirical data. That is, in their data, the

increase in theta power began only 200 ms prior to the peak

of the ERN but persisted for roughly 400 ms after the peak. Our

empirical data do not replicate this asymmetry: As shown in

Figure 6, increases in total theta were evident from approxi-

mately � 200 ms to 1300 ms relative to the response; that is, the

increase was apparent for roughly 250 ms both before and after

the ERN peak. The cause of this discrepancy between our em-

pirical results and those of Luu et al. is unclear. Nonetheless, in

this context it is worth noting that neither of the two accounts of

ERP generation predicts that increases in theta power must

necessarily have a symmetric distribution around the peak

latency of the ERN. Instead, the degree of skew in theta power

depends on the latency distribution of phase resetting or of the

phasic peak. Theta power was symmetrical in the present simu-

lations because we modeled the latencies of phase resetting and

phasic peaks with a symmetric (normal) distribution. However,

in simulations not reported here, we have replicated Luu et al.’s

observed asymmetrical distribution of theta power through the

use of skewed (exponential and ex-Gaussian) latency distribu-

tions. It follows that the observation of an asymmetric increase in

theta power in empirical EEG data (e.g., Luu et al., 2004) does

not distinguish between competing theories of the generation of

the ERN.

Non-Phase-Locked Theta Activity in the EEG

According to the classical view, the ERN is generated independ-

ently of the ongoing EEG. Therefore, in this view there is no

reason to expect any relationship between theta activity in the

averaged ERP and theta activity in the ‘‘background’’ EEG. To

assess whether the averaged ERP and background EEG are in-

deed independent in this way, Luu et al. (2004) calculated a

measure of ‘‘non-phase-locked theta’’ in their ERN data. Spe-

cifically, they calculated non-phase-locked theta by subtracting

each subject’s averaged ERP from their individual EEG

epochsFto remove the contribution of phase-locked activi-

tyFthen filtering, rectifying, and grand-averaging the resulting

data (to reveal the residual, non-phase-locked theta). Figure 6

(lower middle panels) presents analyses of non-phase-locked

theta in the empirical and simulated data.

In contrast to the results reported by Luu et al. (2004), our

data exhibit a marked, long-lasting increase in non-phase-locked

theta around the time of the response. Luu et al. found that non-

phase-locked theta showed a sharply scalloped pattern, very

similar to the pattern we observe when we subtract phase-locked

theta from total theta (Figure 6, left lower panel), suggesting that

there may be procedural differences between their study and

ours. Despite these differences, critical features are shared by our

empirical data and those of Luu et al. Specifically, like Luu et al.,

we find that non-phase-locked theta activity shows scalloping at

the theta frequency that mirrors the scalloping evident in phase-

locked theta. Moreover, non-phase-locked and phase-locked

theta share a clear frontocentral scalp topography.

Luu et al. argue that this pattern of data supports the

synchronized oscillation account of the ERN. Their argument is

as follows: If the classical view is correct, and the ERN is gen-

erated independently of the ongoing EEG, then there should be

no relationship between theta activity in the averaged ERP and

‘‘background’’ EEG. However, examination of theta activity

reflected in the averaged ERP (phase-locked theta) and in the

background EEG (non-phase-locked theta) reveals a close

dependence in terms of shared spatiotemporal properties.

Luu et al. therefore interpret their findings as supporting the

synchronized oscillation account of the ERN. Apparently con-

sistent with this conclusion, analysis of our phase resetting simu-

lation reveals similar patterns (Figure 6, lower middle panels).

However, the patterns evident in the empirical data and phase

resetting simulation are once again also evident in our classical

peak simulation (Figure 6, right panel), in which the ERP reflects

activity that is independent of the background EEG. To under-
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stand why these patterns are evident in the classical peak simu-

lation, the critical point to note is that the phasic ERN peak was

simulated with a degree of latency variability across trials.

Latency variability is inevitably observed in real experimental

data (Truccolo, Ding, Knuth, Nakamura, & Bressler, 2002), and

has the consequence that the averaged ERP is an imperfect re-

flection of activity occurring on individual trials (Mazaheri &

Picton, 2005; McFarland & Cacace, 2004). In our classical peak

simulation, latency jitter introduces temporal smearing that re-

duces the frequency and amplitude of the averaged peak relative

to the peak added on individual trials (Figure 1c). As a conse-

quence, subtracting the averaged ERP from individual trials does

not fully remove all of the phasic activity that was added to the

background EEG on each trial (i.e., to simulate the ERN under

the classical view). Residual phasic activity therefore contamin-

ates the measure of non-phase-locked activity. This contamina-

tion accounts for the close relationship between phase-locked

and non-phase-locked theta activity that is evident in classical

peak simulationFboth reflect the spatiotemporal properties of

the added phasic peakFand demonstrates that this close rela-

tionship is not a unique prediction of the synchronized oscillation

hypothesis.

Scalp Distribution of Theta Activity

Spatiotemporal properties of the empirical and simulated data

are illustrated in Figures 2, 5, and 6. Our empirical data dem-

onstrate important properties that Luu et al. (2004) have inter-

preted as being inconsistent with a classical view account of the

ERN. First, the oscillatory features evident in the 4–7-Hz filtered

ERP (Figures 2 and 5, left panels) show a consistent frontocen-

tral scalp topography. Luu et al. suggest that, for the classical

view to explain the presence of these oscillatory peaks (at � 112

ms, 68 ms, and 1252 ms), one would need to assume that they

reflect a sequence of independent phasic events that by chance

happen to occur at the theta frequency. As Luu et al. note, if

these peaks reflect independent events, then there is no reason to

expect them to show a consistent scalp topography or neural

source. However, when Luu et al. performed dipole source mod-

eling of their filtered ERP data, they found that the same fixed

dipole sources contributed to all of the oscillatory peaks (and

hence that these fixed sources showed oscillatory features).

A second important property of the empirical data is illustrated

in Figure 6 (left panel): Measures of phase-locked and non-

phase-locked theta demonstrate a shared frontocentral scalp

topography. Luu et al. interpret this close association between

measures associated with the averaged ERP (phase-locked theta)

and ongoing EEG (non-phase-locked theta) as evidence in favor

of the phase-resetting account of the ERN. This close association

is indeed apparent in our phase resetting simulation (Figures 2, 5,

and 6, middle panels).

However, corresponding analyses of our classical peak simu-

lation suggest that these features are equally consistent with the

classical view. Oscillatory features in the simulated ERP show a

consistent frontocentral scalp topography (Figures 2 and 5, right

panels), as do measures of both phase-locked and non-phase-

locked theta activity (Figure 6, right panel). A first implication of

these results is that the classical view need not attribute oscilla-

tory features in the filtered ERP to successive, independent pha-

sic peaks. Instead, the presence of oscillatory features in the

simulated data is due to ringing artifact associated with narrow

bandpass filtering of a single phasic peak thatmanifests as a series

of regularly spaced (oscillatory) peaks (Figure 3). Critically, the

amplitude of the ringing artifact varies across scalp locations in

proportion to the size of the original peak, and hence the

artifactual oscillations show a consistent scalp topography.

Modeling the neural source of these (artifactual) oscillations

would necessarily reveal fixed sources with oscillatory features,

even though the original peak was generated according to the

classical view. It follows that the empirically observed pat-

ternFof oscillatory features with consistent scalp topography

and neural sourceFdoes not provide unambiguous evidence of

synchronized oscillations; this pattern may also be produced

when narrow bandpass filtering causes ringing artifacts around a

phasic peak.

Figure 6 (right panel) shows that the classical peak simulation

also replicates the empirically observed pattern of a consistent

scalp topography of phase-locked and non-phase-locked theta.

Phase-locked theta reflects in a straightforward way the addition

of the phasic ERN peak, and therefore replicates the (fronto-

central) scalp topography of this peak. Of more interest is the

observation of the same topography in non-phase-locked theta.

Luu et al. (2004) suggest that the classical view would not predict

this finding, because subtracting the averaged ERP from EEG

data should isolate uncorrelated EEG noise that is independent

of the phasic peak. However, as noted above, to the extent that

there is any latency jitter of phasic events present in the EEG, the

averaged ERP will be an imperfect reflection of phasic activity

occurring on individual trials. Hence, subtracting the averaged

ERP will never be completely effective in isolating the ‘‘back-

ground’’ EEG: There will always be some contamination from

phasic activity that is not subtracted out. In the classical peak

simulation, the substantial increase in non-phase-locked theta

(Figure 6, lower right panels) is entirely attributable to this re-

sidual phasic activity. Non-phase-locked theta therefore shares a

common scalp topography with phase-locked theta in the clas-

sical peak simulation, because both reflect the properties of the

added phasic peak.

Discussion

We have used simulations of EEG data to evaluate a set of so-

phisticated analysis methods used by Luu et al. (2004) to support

the hypothesis that the ERN is generated by synchronization of

ongoing theta oscillations in the EEG. The simulation results call

into question whether these methods can provide unambiguous

evidence on this issue. In each case, patterns evident in the em-

pirical data were equally evident in both the phase resetting and

classical peak simulations. These findings suggest that the pro-

posed analysis methods do not effectively disambiguate between

competing accounts of the neural basis of the ERN. In particular,

it is striking that our classical peak simulationFwhich contained

no phase resetting of ongoing EEG activityFdemonstrated all

of the properties that Luu et al. had taken to be diagnostic of the

presence of synchronized oscillations.

An important implication of our findings is that there may be

only subtle differences between the predictions of the classical

and synchronized oscillation hypotheses, and that it may not

be possible to distinguish the accounts on the basis of broad,

qualitative features of the data. In their analyses, Luu et al.

(2004) identified the following properties as being diagnostic of

the presence of theta phase resetting: (1) the presence of oscil-

latory features in narrow bandpass filtered ERP and EEG data,

(2) the consistent scalp topography and neural source of these
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oscillatory features, (3) the association between theta power in

the ERP and phase-coherent theta activity in individual EEG

epochs, and (4) the shared scalp topography and neural source of

phase-locked and non-phase-locked theta EEG activity. We do

not dispute Luu et al.’s claim that their phase-resetting account

can explain the observation of these properties in empirical stud-

ies. Indeed, our simulations of the phase-resetting view support

this claim. However, our simulations demonstrate that each of

the observed properties is equally consistent with the classical

view of the ERN as arising from phasic neural activity occurring

independently of ongoing EEG processes.

As we have discussed previously (Yeung, Bogacz et al., 2004),

narrowbandpass filtering necessarily results in the observation of

oscillatory features in the frequency range of interest (property

1). In the present classical peak simulation, 4–7-Hz filtering of a

phasic ERP peak resulted in ringing artifacts that very closely

resembled oscillatory features observed in empirical data. These

ringing artifacts were also present in individual simulated epochs,

where they summed or canceled with theta activity in the back-

ground EEG in ways that closely mimicked patterns evident

through visual inspection of empirical EEG data. Moreover,

because the oscillatory features of the simulated datawere caused

by ringing artifacts, their spatiotemporal properties reflected

those of the phasic peak used to simulate the ERN (property 2).

Our classical peak simulation also demonstrated a clear as-

sociation between the ERN and phase-coherent theta activity

(property 3). Thus, although it is true that the presence of theta

power in the averaged ERP indicates that there is phase-coherent

activity in individual EEG epochsFif theta activity was not co-

herent, it would tend to average to zero across trialsFit does not

follow that this phase coherence must be produced by synchron-

ization of ongoing oscillations. That is, the observation of phase

coherence does not necessarily imply the presence of phase re-

setting (Jervis et al., 1983; Mäkinen et al., 2005; Yeung, Bogacz

et al., 2004). As our simulations demonstrate, theta phase

coherence is also a necessary consequence of adding event-related

phasic peaks with energy in the theta frequency range.

Therefore, analyses that simply seek to demonstrate the pres-

ence of phase coherence cannot distinguish the competing

accounts: The critical requirement is to identify the specific

cause of this coherence.

Finally, phase-locked and non-phase-locked theta activity in

the classical peak simulation shared a common frontocentral

scalp distribution (property 4). This pattern was observed be-

cause subtracting the averaged ERPFas part of the calculation

of non-phase-locked thetaFdoes not effectively remove the

contribution of phasic activity to the EEG. Latency variability

means that the averaged ERP underestimates the frequency and

amplitude characteristics of phasic activity in individual EEG

epochs (Mazaheri & Picton, 2005; McFarland & Cacace, 2004;

Truccolo et al., 2002). Residual phasic activity will therefore

contaminate measures of the ‘‘background’’ EEG even after the

averaged ERP is subtracted from each trial. Hence, even if the

classical view were correct, one would expect measures of non-

phase-locked theta activity in the background EEG to reflect

properties of the phasic peak and, therefore, to share important

spatiotemporal features with phase-locked EEG activity.

These results demonstrate important limitations in analysis

methods that focus on EEG and ERP activity within narrowly

defined frequency bands. The primary drawback to such ap-

proaches, as we have discussed in detail, is that it is extremely

difficult to determine whether observed oscillatory features of

empirical data reflect true oscillatory phase resetting or whether

they instead reflect frequency-specific components of phasic

neural events. Future research might therefore profitably make

use of existing techniques, such as wavelet and Fourier analyses,

that permit the simultaneous analysis of time-varying spectral

content across a broad range of frequencies. For example,

whereas phasic events and synchronized oscillations may be in-

distinguishable within a narrow frequency band, they may differ

substantially in their temporal and spectral profiles when ana-

lyzed across a broad range of frequencies. Thus, an important

goal for future research will be to extend existing methods in

order to develop more sophisticated, quantitative meas-

uresFbased, for example, on wavelet or Fourier analysesFthat

might be sensitive to these more subtle distinctions.

We suggest that a fruitful approach for future research in this

direction will be to apply newly developed analysis methods to

simulated data sets of the kind used here. Because the nature of

these data sets can be known and tightly controlled, they can be

used to evaluate rigorously the effectiveness of the analysis

methods in question. In the present research, we have shown

that observed properties of empirical EEG data can be replicated

in simulated data constructed in two very different ways, by

synchronization of ongoing EEGoscillations and by the addition

of classical phasic peaks. These results demonstrate that the

analysis methods we have considered cannot provide unambig-

uous evidence of the presence of synchronized oscillations.

Meanwhile, parallel research has used related simulation meth-

ods to exploreweaknesses of analytic approaches previously used

to support the classical view (Klimesch et al., 2006). Taken

together, these results demonstrate the value of simulation stud-

ies in evaluating the efficacy of analysis methods that aim to

distinguish between competing accounts of the neural basis of

ERP waveforms.2

Overall, the present findings suggest that it remains open

whether the ERN reflects phasic neural activity or the synchron-

ization of ongoing EEG activity. Also uncertain is the degree to

which this debate about the neural basis of the ERN will influ-

ence and inform debate about the functional significance of this

component. On the one hand, to the extent that individual ERP

components contain substantial power within a given frequency

band, theories about these components will likely benefit from a

consideration of research that has linked activity within those

frequency bands with specific cognitive functions. In the context

of the ERN, for example, one intriguing hypothesis is that this

component might be related to frontal midline theta activity that

has been consistently linked with working memory functions

(Gevins, Smith, McEvoy, & Yu, 1997; Klimesch, 1999; Klime-

sch, Doppelmayr, Russegger, & Pachinger, 1996). On the other

hand, the classical and synchronized oscillation views agree on

the critical point that ERP peaks reflect neural events that are

time-locked to the cognitive processes of interestFthe theories

only disagree as to whether these events cause phasic activity or

phase resetting. Therefore, ERP components, and the ERN spe-

cifically, will remain useful tools for identifying and tracking the

dynamics of neural events associated with psychological pro-

cesses, irrespective of whether they are caused by phasic bursts of

activity or oscillatory synchrony.
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2To facilitate the use of our simulation methods in the evaluation of
EEGanalysis techniques, we havemade available online ourMatlab code
for EEG data simulation, together with a brief tutorial, at the following
URL: http://www.cs.bris.ac.uk/home/rafal/phasereset/.



REFERENCES

BaSar, E. (1980). EEG brain dynamics: Relation between EEG and brain
evoked potentials. Amsterdam: Elsevier.

Bogacz, R., Yeung, N., & Holroyd, C. B. (2002). Detection of phase
resetting in the electroencephalogram: An evaluation of methods.
Program No. 506.9. 2005 Abstract Viewer and Itinerary Planner.
Washington, DC: Society for Neuroscience.

Botvinick,M.M., Braver, T. S., Carter, C. S., Barch,D.M.,&Cohen, J.D.
(2001). Evaluating the demand for control: Anterior cingulate cortex
and crosstalk monitoring. Psychological Review, 108, 624–652.

Brandt, M. E., Jansen, B. H., & Carbonari, J. P. (1991). Pre-stimulus
spectral EEG patterns and the visual evoked response. Electroen-
cephalography and Clinical Neurophysiology, 80, 16–20.

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional
influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4,
215–222.

Carter, C. S., Braver, T. S., Barch, D.M., Botvinick, M. M., Noll, D., &
Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and
the online monitoring of performance. Science, 280, 747–749.

Coles, M. G. H., Gratton, G., & Fabiani, M. (1990). Event-related brain
potentials. In J. T. Cacioppo & L. G. Tassinary (Eds.), Principles
of psychophysiology: Physical, social and inferential elements
(pp. 413–455). Cambridge, UK: Cambridge University Press.

Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain potentials:
An introduction. In M. D. Rugg & M. G. H. Coles (Eds.), Electro-
physiology of mind: Event-related brain potentials and cognition
(pp. 1–26). Oxford: Oxford University Press.

Cooper, R., Winter, A. L., Crow, H. J., & Walter, W. G. (1965). Com-
parison of subcortical, cortical and scalp activity using chronically
indwelling electrodes in man. Electroencephalography and Clinical
Neurophysiology, 18, 217–228.

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the
identification of target letters in a non-search task. Perception and
Psychophysics, 16, 143–149.

Falkenstein, M., Hohnsbein, J., Hoorman, J., & Blanke, L. (1990). Ef-
fects of errors in choice reaction tasks on the ERP under focused and
divided attention. In C. H. M. Brunia, A. W. K. Gaillard, & A. Kok
(Eds.), Psychophysiological brain research (Vol. 1, pp. 192–195).
Tilburg, the Netherlands: Tilburg University Press.

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E.
(1993). A neural system for error detection and compensation.
Psychological Science, 4, 385–390.

Gevins, A., Smith, M. E., McEvoy, L. K., & Yu, D. (1997). High-reso-
lution EEG mapping of cortical activation related to working mem-
ory: Effects of task difficulty, type of processing, and practice.
Cerebral Cortex, 7, 374–385.

Goff, W. R., Allison, T., & Vaughan, H. G. (1978). The functional neu-
roanatomy of event related potentials. In E. Callaway, P. Tueting, &
S. Koslow (Eds.), Event-related brain potentials in man (pp. 1–91).
New York: Academic Press.

Gruber, W. R., Klimesch, W., Sauseng, P., & Doppelmayr, M. (2005).
Alpha phase synchronization predicts p1 and n1 latency and amp-
litude size. Cerebral Cortex, 15, 371–377.

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human
error processing: Reinforcement learning, dopamine, and the error-
related negativity. Psychological Review, 109, 679–709.

Jansen, B. H., Agarwal, G., Hegde, A., & Boutros, N. N. (2003). Phase
synchronization of the ongoing EEG and auditory EP generation.
Clinical Neurophysiology, 114, 79–85.

Jervis, B. W., Nichols, M. J., Johnson, T. E., Allen, E., & Hudson, N. R.
(1983). A fundamental investigation of the composition of auditory
evoked potentials. IEEE Transactions on Biomedical Engineering, 30,
43–50.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive
and memory performance: A review and analysis. Brain Research
Reviews, 29, 169–195.

Klimesch, W., Doppelmayr, M., Russegger, H., & Pachinger, T. (1996).
Theta band power in the human scalp EEG and the encoding of new
information. NeuroReport, 7, 1235–1240.

Klimesch, W., Hanslmayr, S., Sauseng, P., & Gruber, W. R. (2006).
Distinguishing the evoked response from phase reset: A comment to
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Mäkinen, V., Tiitinen, H., & May, P. (2005). Auditory event-related
responses are generated independently of ongoing brain activity.
NeuroImage, 24, 961–968.

Mazaheri, A., & Picton, T. W. (2005). EEG spectral dynamics during
discrimination of auditory and visual targets. Cognitive Brain
Research, 24, 81–96.

McFarland, D. J., & Cacace, A. T. (2004). Separating stimulus-locked
and unlocked components of the auditory event-related potential.
Hearing Research, 193, 111–120.

Pailing, P. E., Segalowitz, S. J., Dywan, J., & Davies, P. L. (2002). Error
negativity and response control. Psychophysiology, 39, 198–206.

Rabbitt, P. M. A. (1966). Error correction time without external error
signals. Nature, 212, 438.

Rabbitt, P. M. A. (2002). Consciousness is slower than you think. Quar-
terly Journal of Experimental Psychology, 55A, 1081–1092.

Sayers, B.M., Beagley, H. A., &Henshall,W. R. (1974). Themechanism
of auditory evoked EEG responses. Nature, 247, 481–483.

Shah,A. S., Bressler, S. L.,Knuth,K.H.,Ding,M.,Mehta,A.D.,Ulbert, I.,
et al. (2004).Neural dynamics and the fundamentalmechanisms of event-
related brain potentials. Cerebral Cortex, 14, 476–483.

Truccolo,W.A.,Ding,M.,Knuth,K.H., Nakamura, R., &Bressler, S. L.
(2002). Trial-to-trial variability of cortical evoked responses:
Implications for the analysis of functional connectivity. Clinical
Neurophysiology, 113, 206–226.

Vaughan, H. G. (1969). The relationship of brain activity to scalp re-
cordings of event-related potentials. In E. Donchin & D. B. Lindsley
(Eds.), Average evoked potentials: Methods, results, and evaluations.
Washington, DC: U.S. Government Printing Office.

Yeung, N. (2004). Relating cognitive and affective theories of the error-
related negativity. In M. Ullsperger & M. Falkenstein (Eds.), Errors,
conflicts, and the brain. Current opinions on performance monitoring
(pp. 63–70). Leipzig, Germany: Max Planck Institute of Cognitive
Neuroscience.

Yeung, N., Bogacz, R., Holroyd, C. B., & Cohen, J. D. (2004). Detection
of synchronized oscillations in the electroencephalogram: An evalu-
ation of methods. Psychophysiology, 41, 822–832.

Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of
error detection: Conflict monitoring and the error-related negativity.
Psychological Review, 111, 931–959.

(Received March 16, 2006; Accepted October 9, 2006)

Theta oscillations and the ERN 49


