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Abstract

The signal averaging approach typically used in ERP research assumes that peaks in ERP waveforms reflect neural

activity that is uncorrelated with activity in the ongoing EEG. However, this assumption has been challenged by

research suggesting that ERP peaks reflect event-related synchronization of ongoing EEG oscillations. In this study,

we investigated the validity of a set of methods that have been used to demonstrate that particular ERP peaks result

from synchronized EEG oscillations. We simulated epochs of EEG data by superimposing phasic peaks on noise

characterized by the power spectrum of the EEG. When applied to the simulated data, the methods in question

produced results that have previously been interpreted as evidence of synchronized oscillations, even though no such

synchrony was present. These findings suggest that proposed analysis methods may not effectively disambiguate

competing views of ERP generation.

Descriptors: Electroencephalography, Event-related potential, Synchrony, Oscillations, Phase resetting

A common approach to the study of electroencephalographic

(EEG) activity is to assess voltage changes that are time-locked to

events of interest such as stimuli or responses.Whenone calculates

the average voltage across a number of EEG epochs that are each

time-locked to a repetition of an event of interest, characteristic

waveforms are observed. The event-related brain potentials

(ERPs) thus revealed consist of a series of positive and negative

peaks occurring at a fixed time relative to the event. These com-

ponent peaks are considered to reflect phasic activity in one or

more discrete brain areas, and are studied with the assumption

that they index meaningful aspects of cognitive processing (see,

e.g., Coles, Gratton, & Fabiani, 1990; Coles & Rugg, 1995).

An issue of current debate is the relation between ERPs and

rhythmic activity in the ongoing EEG. Through Fourier and

wavelet analyses, it has been shown that rhythmic activity within

specific frequency bandsFdelta (0.5–4Hz), theta (4–8Hz),

alpha (8–12Hz), beta (12–20Hz), and gamma (20–70Hz)F
appears to index meaningful cognitive processes (e.g., Kahana,

Sekuler, Caplan, Kirschen, & Madsen, 1999; Klimesch, 1999;

Tallon-Baudry & Bertrand, 1999). The signal averaging ap-

proach typically used in ERP research treats this oscillatory EEG

activity as background ‘‘noise’’ in which the ERP ‘‘signal’’ is

embedded. According to this classical view, ERPs reflect phasic

bursts of activity in one or more discrete brain regions that occur

time-locked to particular events of interest, whereas the back-

ground EEG comprises activity that is uncorrelated with these

eventsFa mixture of ongoing rhythmic activity that reflects the

overall state of the processing network (e.g., Gevins, Smith,

McEvoy, & Yu, 1997; Pfurtscheller & Lopes da Silva, 1999) and

ERPs evoked by nonexperimental events. At various times over

the last 30 years, however, the classical view has been challenged

by the proposal that ERPs should not be regarded as uncorre-

lated with the background EEG, but are instead generated by

event-related reorganization of this ongoing rhythmic activity

(BaSar, 1980; KarakaS, Erzengin, & BaSar, 2000; Luu & Tucker,

2001; Makeig, Westerfield, et al., 2002; Sayers, Beagley, & Hen-

shall, 1974). The present research aims to evaluate one set of

analysis methods that have been used to support this synchro-

nized oscillation hypothesis.
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Phasic Events and Synchronized Oscillations

The competing views of ERP generation are illustrated in Figure 1.

The left panel illustrates the classical view, in which phasic event-

related activityFthe period of which is indicated by the shaded

regionFis embedded in ongoing fluctuations that are inconsist-

ent across trials. For illustrative purposes, the figure shows a

situation in which a burst of phasic activity is visible in individual

EEG epochs. In some situations, however, phasic activity may

not be clearly evident in individual EEG epochs because it is

small relative to the amplitude of fluctuations in the background

EEG. Nonetheless, when a number of EEG epochs are averaged

together, task-irrelevant fluctuations in the ongoing EEG cancel

out so that the resulting ERP waveforms reflect only phasic ac-

tivity that is consistent across trials. This signal averaging ap-

proach, grounded in the study of intracranial recordings of

evoked neural activity (e.g., Domino, Matsuoka, Waltz, &

Cooper, 1964; Goff, Allison, & Vaughan, 1978; Shah et al.,

2004), has formed the basis for several decades of ERP research

that has been very successful in identifying ERP components

corresponding to a wide range of cognitive processes (e.g., Coles

et al., 1990; Coles & Rugg, 1995; Goff et al., 1978; Vaughan,

1969).

Although the signal averaging approach has formed the

foundation of a successful ERP research program, it has not gone

unchallenged. It has often been noted that signal averaging may

result in the loss of critical information about intertrial variability

in neural activityFbecause, by definition, averaging emphasizes

activity that is consistent across trials (Vaughan, 1969; Weinberg,

1978). This criticism hasmost often been expressed in the context

of the hypothesis, first proposed by Sayers et al. (1974), that

ERPs may be generated by reorganization of ongoing rhythmic

activity in the EEG, rather than being uncorrelated with this

activity. This hypothesis challenges the assumption of the

classical view that peaks apparent in ERPs reflect phasic,

event-related bursts of neural activity that are unrelated to the

background EEG: Instead, ERP peaks may be generated by

event-related synchronization of oscillatory activity in the EEG

that occurs with little or no accompanying change in the mag-

nitude of those oscillations.

We distinguish two variants of the synchronized oscillation

hypothesis. The right-hand panel of Figure 1 illustrates the case

of pure phase resetting, which has been proposed as an account of

the N1 peaks evoked by auditory (Jansen, Agarwal, Hegde, &

Boutos, 2003; Sayers et al., 1974) and visual (Klimesch et al.,

2004; Makeig, Westerfield, et al., 2002) stimuli. In this case, the

occurrence of an event leads to resetting of the phase of ongoing

rhythmic activity but does not cause any change in the overall

magnitude of voltage fluctuations in the EEG (i.e., there is phase

modulation but no amplitude modulation of the EEG; Penny,

Kiebel, Kilner, & Rugg, 2002). As a consequence of phase re-

setting, there is a period during which there is consistency (or

coherence) of EEG phase across trials. This phase coherence is

apparent visually in Figure 1 (right panel) as the alignment of

peaks and troughs in EEG traces from individual trials during

the period indicated by the shaded region. The net result is that

the averaged ERP is characterized by a phasic burst of activity

around the time of the eventFcaused by phase-resetting of

rhythmic EEG activity and consequent increase in coherence

during that epochFand is relatively flat during periods in which

there is no phase coherence across trials.

The center panel of Figure 1 illustrates the case of phase

resetting with enhancement, in which there is an event-related

increase in the amplitude of the oscillation in addition to phase

resetting. In this case, the transient signal apparent in the aver-

aged ERP in the period just after the event may also be apparent

to some degree on individual trials. Phase resetting with en-

hancement has been proposed as an explanation for many ERP

peaks, including the N1, N2, and P3 (BaSar, 1980; BaSar, BaSar-

Eroglu, Parnefjord, Rahn, & Schürmann, 1992; KarakaS et al.,

2000). More recently, it has been suggested that the error-related

negativity (Ne or ERN)Fan ERP component seen following

errors in choice RTtasks (Falkenstein, Hohnsbein, Hoorman, &

Blanke, 1990; Gehring, Goss, Coles, Meyer, & Donchin,

1993)Fmay be generated by phase resetting and enhancement

of theta frequency oscillations in medial frontal cortex (Luu &

Tucker, 2001).

Methods for Detecting Synchronized Oscillations

Various methods have been proposed to provide evidence of

synchronized oscillations. Pure phase resetting can be demon-

strated by showing that particular ERP peaks are generated by

event-related changes in the phase distribution of the EEG,

without corresponding increases in spectral power at frequencies

present in the ERP peak. Such demonstrations have been made

for some early auditory (Jansen et al., 1993; Sayers et al., 1974)

and visual (Klimesch et al., 2004; Makeig, Westerfield, et al.,

2002) evoked potentials, as well as for theta oscillations associ-

ated with working memory processes (Rizzuto et al., 2003). Pure

phase resetting is likewise easily ruled out by showing that ERPs

are associated with increases in spectral power (Jervis, Nichols,

Johnson, Allen, & Hudson, 1983; Shah et al., 2004).

It is more difficult to distinguish between the classical view

and the phase resetting with enhancement hypothesis, both of

which predict that ERP peaks are associated with increased

power in some frequency range. Such power increases are ob-

served for the N2, P3, and Ne/ERN (e.g., Demiralp, Ademoglu,

Schürmann, BaSar-Eroglu, & BaSar, 1999; KarakaS et al., 2000,

Makeig, Luu, & Tucker, 2002). In such cases, further analysis

methods are required to distinguish between the competing ac-

counts. To this end, a number ofmethods have recently been used

to provide evidence that ERP peaks result from modulations of
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Figure 1. Comparison of the classical and synchronized oscillation

theories of the origin of ERPs. Each panel shows examples of idealized

EEG epochs, each corresponding to a single trial, along with the ERP

(bottom line) calculated as the average of many such epochs. The left

panel shows the classical view, in which ERP components are held to

reflect phasic neural events that are embedded in background EEG noise.

The center and right panels illustrate how synchronization of EEG

oscillationsmay also contribute to the ERP, either by pure phase resetting

(right panel) or by phase resetting and enhancement (i.e., increases in

amplitude) of oscillations (center panel).



the rhythmic EEG rather than phasic events (e.g., Luu &

Tucker, 2001; Makeig, Westerfield, et al., 2002). These analyses

suggest that certain diagnostic properties are expected if ERPs

reflect synchronized oscillations. Among these properties are the

following.

1. Uneven phase distributions and increased intertrial coherence

associated with the ERP peak. The most direct prediction of

the synchronized oscillation hypothesis is that there should be

an uneven distribution of the phase of oscillations across trials

in the period following the event of interest. Phase informa-

tion fromFourier or wavelet analyses can be used in twoways

to assess phase synchronization (e.g., Makeig, Westerfield, et

al., 2002). A first, qualitative approach is to plot the EEGdata

after sorting them according to their spectral phase at a par-

ticular frequency, so that visual inspection can be used to

determine whether ERP components coincide with periods in

which EEG activity at that frequency tends to be in phase

across trials. A second, more quantitative approach is to

measure the correlation across trials in the EEG spectral

phase for particular frequency ranges. The presence of this

intertrial phase coherence (also called phase-locking factor

[Tallon-Baudry, Bertrand, Delpuech, & Pernier, 1996] and

phase-locking index [Klimesch et al., 2004]) is considered ev-

idence for the hypothesis that an ERP peak is generated by

phase resetting of EEG oscillations (e.g., Makeig,Westerfield,

et al., 2002).

2. Appearance of oscillations in bandpass filtered ERP data. As is

evident in Figure 1, synchronization of oscillations should

produce a series of peaks of diminishing amplitude, ringing

that should be apparent for as long as the oscillations remain

partially in phase across epochs. However, the absence of such

ringing is not conclusive evidence of the absence of synchro-

nized oscillations: It could be that ringing is present but is

masked by subsequent ERP peaks. One suggestion is that

bandpass filtering around the peak frequency of the compo-

nent of interest can be used to remove the contribution of

other superimposed components, thus uncovering the under-

lying oscillations (e.g., Luu & Tucker, 2001).

3. Correlation between ERP amplitude and spectral power in the

EEG. If ERPs are produced by synchronization of ongoing

oscillations in the EEG, then the amplitude of the ERPs

should depend upon the amplitude of these oscillations. Thus,

amplitude sorting is another method that has been used to

provide evidence of synchronized oscillations (e.g., Makeig,

Westerfield, et al., 2002). This method involves selecting sub-

sets of data comprising trials with the highest and lowest EEG

power at the peak frequency of the component of interest. The

predicted result is that the ERP should have a high amplitude

in the subset of trials with the highest EEG power, and should

be small or absent in trials with lowest EEG power. This

finding has previously been reported for visual N1 data sorted

according to alpha power (Makeig, Westerfield, et al., 2002).

4. Shared scalp distribution of spectral power in the ERP and

EEG. Along similar lines, if ERPs are produced by synchro-

nization of ongoing oscillations in the EEG, one might expect

that the scalp distribution of spectral power in the ERP should

mirror the scalp distribution of spectral power in the EEG.

This relationship between EEG and ERP power has been

observed for poststimulus theta and alpha power that con-

tributes to the N1 evoked by visual stimuli (e.g., Makeig,

Westerfield, et al., 2002).

5. Greater spectral power in the ERP than expected by chance.

According to the classical view, the contribution of EEGnoise

to the averaged ERP should tend toward zero as more epochs

are averaged together, a fact that underpins the typical signal

averaging approach. In fact, the expected strength of the

contribution of EEG noise to the averaged ERP is easily cal-

culated as SEEG/N, where SEEG is the power in the single-trial

EEG at a given frequency and N is the number of EEG ep-

ochs. Power at that frequency will only equal this expected

value if the phase of this frequency component of the EEG is

randomly distributed across trials. Hence, to the extent that

there is more power than expected in the averaged ERP, one

can infer that the phase distribution of the EEG is not ran-

dom. Observations of this kind of phase coherence have been

interpreted as evidence for the phase resetting account (e.g.,

Makeig, Westerfield, et al., 2002).

Research Overview

In the present research, we evaluate the five analysis methods

described above, each of which identifies a property of empirical

EEG data that has been taken to indicate the presence of syn-

chronized oscillations. These methods make the critical assump-

tion that the observed properties should not be apparent if the

classical view of ERP generation is correct (i.e., if the ERP re-

flects the addition of phasic peaks to uncorrelated background

noise). However, the validity of this assumption has not yet been

tested; that is, it has not yet been tested whether the proposed

analysis methods can provide clear evidence against the classical

view.

To address this issue, we generated simulated EEG data ac-

cording to the classical view, comprising phasic peaks embedded

in background noise. We then applied each analysis method to

both the simulated data and to empirically derived data. Of in-

terest was whether the methods would produce results that sug-

gest the presence of synchronized oscillations when applied to

our simulated data (in which there was no phase resetting). If so,

then the ability of these methods to distinguish between phasic

events and oscillatory activity must be called into question. As an

illustrative example, the tested data involved the Ne/ERN. Our

aim is not to determine whether the Ne/ERN reflects phasic

neural activity or phase resetting of EEG oscillations. Rather,

our aim is to investigate whether the methods can provide un-

ambiguous evidence of synchronized oscillations in this example

data set.

Methods

Experimental Details

The empirical data are taken from an existing study (Yeung,

Botvinick, & Cohen, in press) in which the full experimental

details are presented. Briefly, 16 participants each performed 816

trials of a speeded choice RT task (Eriksen & Eriksen, 1974).

While they performed the task, the EEG was recorded using Ag/

AgCl electrodes placed in an extended 10–20 systemmontage in a

fabric cap (Neurosoft, Inc.), referenced to linked mastoids. The

signals were digitized at 250Hz. Response-locked epochs, from

400 ms before the response until 400 ms after, were extracted off-

line from the EEG separately for correct and incorrect responses.

We are concerned with the ERPs observed following incorrect

responses. There were 973 error-trial epochs in the data for all 16

participants, and these are the data presented, taken from 31
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electrode positions: FP1, FP2, AFz, F7, F3, Fz, F4, F8, FT7,

FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4,

TP8, P7, P3, Pz, P4, P8, O1, Oz, O2. Our analysis of scalp

topography uses all 31 electrodes; other analyses focus on elec-

trode location FCz, at which the Ne/ERN is maximal.

Simulation Details

We simulated 973 epochs of EEG data, sampled at 250Hz and

running from � 400 ms to 400 ms so as to match the empirical

data. The epochs were constructed by adding two phasic ERP

peaks onto uncorrelated background noise. Figure 2a illustrates

the two phasic peaks used. The first, corresponding to the Ne/

ERN, consisted of a negative-going, half-cycle of a 5-Hz sinusoid,

the latency of which varied across epochs (M5 60 ms; SD5 32

ms). Peak amplitude was constant across trials, but varied across

simulated scalp locations to mimic the frontocentral distribution

of the Ne/ERN. For simplicity, we chose to simulate the scalp

topography of the Ne/ERN peak with a single dipolemodel, with

location: x5 0 cm (midline), y5 2.5 cm (anterior to T7–T8 axis),

z5 6.5 cm (superior to FPz–Oz axis); and orientation: x5 0,

y5 0.1, z5 0.99. Scalp voltage distributions for dipole models

were derived using a standard forward model algorithm (BESA

2000; www.besa.de). At its FCz maximum, the base-to-peak

amplitude of the simulated Ne/ERN was 25 mV. With latency

jitter, the amplitude of the negative peak in the averaged ERPwas

roughly 16 mV,matching the empirically observedNe/ERNpeak.

The second component, corresponding to the Pe (described be-

low), consisted of an unjittered slowwave of frequency 1Hz, with

a positive peak at time 200ms. Again, the scalp topography of the

component was simulated with a single dipole model (location:

x5 0, y5 0.5, z5 0.45; orientation: x5 0, y5 � 0.25, z5 0.97).

At its maximum at simulated electrode location Cz, the base-to-

peak amplitude of the slow-wave component was 22 mV. Figure
2b shows that the summation of these two components (black

line) results in an ERP waveform that closely mimics the mor-

phology of the empirically observed ERP (gray line).

The two phasic peakswere added to uncorrelated background

EEG ‘‘noise’’ that was simulated by summing together 50 si-

nusoids of randomly varying frequency and phase (with different

random values of phase and frequency generated for each sim-

ulated epoch). The frequencies were chosen to span the range

from 0.1 to 125Hz, the phases varied randomly between 0 and

2p. The maximum amplitude of any single frequency component

of the background EEG (at 0.1Hz) was set to be 20 mV. Within

this constraint, the amplitude of the sinusoid at each frequency

was scaled to match the power spectrum of the EEG (estimated

from nonerror trial empirical data).1 Because this process

amounts to an inverse-Fourier transform (with randomized

phase) of a spectral analysis of real data, the simulated data

match closely the surface features of empirically observed EEG

data (as described below). Although the frequency characteristics

of the EEGare known to vary across electrode locations, we used

the same frequency spectrum to simulate the EEG for all elec-

trode locations. This simplifying assumption allowed us to eval-

uate directly the extent to which the spectral characteristics of the

EEGwill be influenced by the addition of phasic ERP peaks with

a particular frequency spectrum and scalp topography, an issue

addressed in Analyses 4 and 5.

The simulation parameters described above were chosen to fit

the observed empirical data. As detailed below, the simulated

data, though very simple in structure, accurately replicate the

primary features of the empirical data. Nonetheless, to reiterate,

our aim here is not to promote this simple model as the ‘‘true’’

account of the Ne/ERN. Rather, we simply wanted to evaluate

whether properties that have been proposed to provide evidence

of synchronized oscillations could be observed in the absence of

such activity.

Results

Basic Features

Empirical data. The principal features of the empirical data

are shown inFigure 3. Figure 3a plots eight example EEG epochs

from electrode FCz (black lines), together with corresponding 4–

12Hz filtered waveforms (gray lines).2 A negative peak corre-

sponding to the Ne/ERN can be observed just after the response

in some of the individual epochs, but this peak is not markedly

greater in amplitude than theta activity observed pre- and post-

response in the individual EEG epochs (gray lines). However,

ongoing theta activity does not occur phase-locked to the re-

sponse, and hence averages out to roughly zero across trials. As a
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Figure 2. Construction of the simulated ERP. a: The simulated ERP

components, corresponding to the Ne/ERN (upper line) with a fronto-

central distribution, and the Pe (lower line) with a diffuse posterior

distribution. b: Response-locked averaged ERP at FCz, separately for

simulated data with no background EEG noise (black line) and for

empirical data (gray line).

1We also ran simulations using white noise and 1/f noise. The results
were not materially different from those presented. The critical feature of
the noise is that it must have appreciable energy in the frequency range of
the phasic peak, as will become apparent.

2All digital filtering reported here used a finite impulse response filter
with zero phase-shift, as has been used in previous research (e.g., Luu &
Tucker, 2001).



consequence, the Ne/ERN is clearly evident in the averaged ERP

(Figure 3b) as a sharp negative deflection peaking about 60 ms

after the response. Prior to the Ne/ERN, the ERP waveform is

negative, becoming increasingly positive. The Ne/ERN is fol-

lowed by a slow-wave positivity that has been labeled the error

positivity (Pe; Falkenstein et al., 1995). Figure 3c shows that

EEG theta power is markedly increased at the time of the Ne/

ERN. The lower panel of Figure 3 illustrates the scalp topog-

raphy of the peaks in the ERPwaveform: TheNe/ERN is evident

as a localized frontocentral negativity peaking �52 ms postre-

sponse, whereas the slow-wave component has a broader, more

posterior focus, peaking �200 ms after the response.

Simulated data. Corresponding analyses of the simulated da-

ta are presented in Figure 3d–f. The simulated data accurately

replicate the surface features of the empirical data described

above. Figure 3d shows eight example simulated EEG epochs

(black lines) and corresponding 4–12Hz filtered waveforms

(gray lines). As was the case for the empirical data, an Ne/ERN

peak is somewhat evident in single-trial EEG traces as part of

ongoing theta activity, but theta activity is also observed pre- and

postresponse. However, theta activity in the background EEG

occurs with random phase and therefore cancels out in the av-

eraged ERP (Figure 3e) to reveal a clear negative peak corre-

sponding to the Ne/ERN. Figure 3f shows that theta power in

the simulated EEG is substantially increased by the addition of

the phasic Ne/ERN peak. The lower panel of Figure 3 illustrates

that our simulated data also capture well the scalp topography

evident in the empirical data, with a frontocentral Ne/ERN peak

at �52 ms that is superimposed on a slow positive-going wave

with a more posterior scalp topography, peaking at �200 ms.

Analysis 1: Phase Distribution and Intertrial Coherence

Figure 4a presents single-trial data for the 973 empirical EEG

epochs. Each epoch is plotted as a horizontal line with voltage

coded by color: negative voltages in blue and positive voltages in

red. The data are sorted from top to bottom according to the

relative phase of 6-Hz activity in the period from 180 ms before

the response until 320 ms after.3 Because the Ne/ERN is strong-

est in the theta frequency band, sorting by the phase of 6-Hz

activity essentially sorts the trials byNe/ERN latency. The figure

shows that there is variability in theta phase across trials, but that

some latencies are more common than others. Specifically, a
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Figure 3. Comparison of surface features of empirical and simulated data. a: Examples of eight empirical EEG epochs (black lines)

and 4–12Hz filtered waveforms (gray lines), taken from electrode FCz. b: Response-locked averaged ERP for the empirical data at

electrode location FCz. c: Relative 6-Hz EEG power at FCz across the epoch of the empirical data. d–f: Corresponding analyses of
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negative peak with theta power, the Ne/ERN, occurs 20–80 ms

after the response on most trials. As a consequence, the phase of

theta activity is unevenly distributed across trials: There is phase

coherence. This notion is confirmed by a quantitative analysis of

the intertrial coherence (ITC) of 6-Hz activity (Figure 4b). As

described above, intertrial coherence provides a measure of the

consistency in relative phase across trials. Figure 4b shows that

there is a marked increase in intertrial phase coherence of 6-Hz

activity at the time of the Ne/ERN.

Thus, the empirical data are characterized by the presence of

an uneven phase distribution and a marked increase in intertrial

phase coherence during the time of the Ne/ERN. However, as

shown in the right-hand panel of Figure 4, the simulated data

demonstrate corresponding properties even though they contain

no synchronized oscillations. Figure 4c plots phase-sorted single-

trial EEG epochs, which show a weighting toward a dominant

phase with a negative peak occurring 20–80 ms after the re-

sponse, resulting in a marked increase in intertrial phase coher-

ence of 6-Hz activity at this time (Figure 4d). The simulated data

demonstrate these properties because the simulated background

EEG contains activity in a range of frequency bands, but this

activity is, by definition, randomly distributed across tri-

alsFthere is no intertrial coherence of phase. The addition of

a phasic peak imposes a dominant phase on the simulated single-

trial EEG, because the peak occurs on every trial shortly after 0

ms. This addition therefore results in an uneven distribution of

phase and significant intertrial phase coherence at all frequencies

for which the phasic peak has significant spectral power (cf. Jer-

vis et al., 1983). These results demonstrate that intertrial phase

coherence is not unambiguous evidence of phase resetting: Ob-

served biases in the distribution of phase might reflect the pres-

ence of a phasic signal rather than synchronization of ongoing

EEG oscillations.

Analysis 2: Bandpass Filtered Data

Simple inspection of the raw data does not provide clear evidence

of frontocentral theta oscillations: The peaks in the ERP wave-

form (Figure 3b) are somewhat irregularly spacedFbeing sep-

arated by 232 ms, 92 ms, and 116 msFand the scalp topography

of the Ne/ERN differs from the topography of the other peaks

apparent in the waveform (Figure 3, lower panel). Nevertheless,

it could be that oscillations generating the Ne/ERN are masked

by the presence of slow-wave activity. One analysis method used

to deal with this masking problem is bandpass filtering, which

aims to remove the effects of superimposed activity and thus

uncover underlying oscillations (e.g., Luu & Tucker, 2001).

Apparently consistent with this rationale, when we 4–12Hz

bandpass filter our empirical data, the Ne/ERN appears to be

part of a long-lasting theta oscillation. This oscillation is appar-

ent both in the averaged ERP (Figure 5a) and in the phase-sorted

EEGdata (Figure 5b).Moreover, the oscillations apparent in the

filtered data show a consistent frontocentral scalp topography

(Figure 5, lower panel): Frontocentral negativities are observed

at � 148 ms, 152 ms, and 1252 ms, occurring in alternation

with frontocentral positivies at � 48 ms and1152 ms. However,

this pattern of results does not provide unambiguous evidence of

synchronized oscillations, because corresponding patterns are

observed in the simulated data: Oscillations are apparent in the

filtered dataFboth in the simulated ERP (Figure 5c) and in the

simulated single-trial EEG (Figure 5d)Fand these oscillations

are almost identical to those observed in the empirical data.

Moreover, as shown in the lower panel of Figure 5, the oscil-

lations in the filtered simulated data demonstrate a consistent

frontocentral scalp topography.

The oscillations in the simulated data cannot reflect synchro-

nization of ongoing EEG activity, because no such synchrony is

present. Instead, the oscillations are a ringing artifact introduced

by bandpass filtering. The origin of this artifact is illustrated in

the right-hand panel of Figure 5. This panel shows a decompo-

sition of the phasic peak into frequency components from 0 to

16Hz, in which a common pattern is apparent: A central peak is

flanked by a variable number of oscillations. When summed

across all frequencies, the side oscillations cancel to leave a single

central peak. Bandpass filtering amounts to removing contribu-

tions outside the frequencies of interest (gray lines), which results

in a filtered signal that contains artifactual oscillations.4 Because

themagnitude of the ringing artifact will depend on the size of the
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original peak, the size of the ringing artifact varies according to

the topography of the original peak. For this reason, the sim-

ulated scalp topography of the oscillations created by the filtering

artifact show a consistent frontocentral scalp topography (Figure

5, lower panel).

The ringing artifact is not the result of unusually sharp voltage

transitions in the simulated peaks, nor is it caused by embedding

the phasic peaks in background EEG noise that is oscillatory in

nature: Figure 2b shows that the simulated data (black line)

mimic very closely the transitions apparent in the empirical data

(gray line), and Figure 5 (right panel) shows that the ringing

artifact is apparent in data with no background noise. Instead,

the results of the simulation demonstrate general difficulties that

are faced when interpreting the results of bandpass filtering:

Applying a narrow bandpass filter may filter out part of the

signal itself, causing a distortion of this signal. The resulting

ringing artifacts may create the appearance of oscillatory activity

where none is present. Thus, the appearance of oscillations in

bandpass filtered data is not unambiguous evidence of synchro-

nized oscillations.

Analysis 3: ERP Amplitude and Spectral Power in the EEG

If ERPs are produced by synchronization of ongoing oscillations

in the EEG, it follows that the amplitude of ERPs should depend

upon the amplitude of these oscillations. Figure 6 (left panel)

presents analysis results consistent with this prediction. Figure 6a

shows single-trial EEG epochs for the 10% of trials with the

highest theta power in the interval from � 180 ms to 320 ms

relative to the response. Figure 6b shows a corresponding plot for

the 10%of trials with the lowest theta energy in this time interval.

Figure 6c shows the averaged ERPs for each trial subset. TheNe/

ERN is very clear in the trials with high theta power (red line),

and entirely absent in trials with low theta activity (green line).

Indeed, trials with high theta activity show some theta activity

before and after the Ne/ERN peak; that is, there are large pos-

itive peaks, with power in the theta band, flanking the Ne/ERN.

As shown in Figure 6d, trials with high theta activity are further

marked by a much higher degree of intertrial phase coherence

than trials with low theta power.

Once again, however, an analysis of the simulated data pro-

duces results very similar to those observed in the empirical data.

As shown in the right panel of Figure 6, simulated trials with high

theta activity aremarked by a very largeNe/ERN that appears to

be part of an ongoing oscillation (Figure 6g, red line). Corre-

spondingly, intertrial phase coherence is high for this trial subset

(Figure 6h, red line). In contrast, trials with low theta activity

show little evidence of a simulated Ne/ERN peak (Figure 6g,

green line) and have correspondingly little intertrial coherence of

theta activity (Figure 6h, green line). The simulated data dem-

onstrate these properties because the background EEG contains

power at theta frequencies that may summate with or cancel out

the phasic peak. Trials in which the signal peak summates with a

peak in the noise are marked by high theta and a large phasic

peak. Indeed, because the selected trials are those in which theta

energy in the noise is almost perfectly in phase with the peak, the

averaged ERP shows evidence of oscillations before and after the

‘‘true’’ peak. In contrast, trials in which the phasic peak is can-

celed out by fluctuations in the background EEG are marked by

low theta power and almost no phasic peak. Therefore, a cor-

relation between ERP amplitude and spectral power in the EEG

does not provide unambiguous evidence that the ERP compo-

nent is generated by synchronized oscillations: Similar patterns
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would be expected to occur when phasic activity summates or

cancels with uncorrelated background EEG noise.

Analysis 4: Scalp Distribution of Spectral Power in the EEG and

ERP

If ERPs are generated by synchronization of EEG oscillations,

then ERP power at specific frequencies should be concentrated at

scalp locations with the greatest power in the EEG at those fre-

quencies. Figure 7 presents the relevant analysis for our empirical

Ne/ERN data. The plots show the scalp distribution of relative

power within four frequency bandsFdelta, theta, alpha, and

betaFseparately for the single-trial EEG and averaged ERP. A

striking feature is that scalp locations with high ERP power have

correspondingly high spectral power in the single-trial EEG data.

Specifically, low-frequency (delta and theta) power is concen-

trated around midline central electrodes for both the single-trial

EEG and averaged ERP.

The right-hand panel of Figure 7 presents a corresponding

analysis of the simulated data. Replicating the pattern observed

in the empirical data, the scalp topography of relative spectral

power is very similar for the EEG and ERP data within each

frequency band. Again, this property is largely restricted to low

frequency delta and theta activity, both of which show a central

midline focus. The explanation for this property is that the phasic

components used in the simulation contain power in the low

frequency bands: the slow-wave component contains delta band

energy, the simulated Ne/ERN peak contains delta and theta

energy. Because these phasic components contribute power both

to the single-trial EEG and to the averaged ERP, the topography

of power in both will tend to reflect the (central midline) topog-

raphy of the phasic ERP components. Thus, shared scalp dis-

tribution of spectral power in the ERP and EEG does not

constitute unambiguous evidence of synchronized oscillations.

Analysis 5: Relative Spectral Power of the EEG and ERP

To the extent that the ERP contains greater power than expected

by chance, one might infer that aspects of the EEG show event-

related synchronization. We therefore calculated the spectral

power of the averagedERP and the power of the ERP that would

be expected given a random distribution of phase across the 973

empirical EEG epochs. Figure 7 (bottom left panel) plots the

resulting ratio of actual ERP power to the power expected as-

suming a randomdistribution of phase, separately for each of the

31 electrode locations, for frequencies from 2 to 20Hz.The ratio

expected assuming random phase is 1:1. The empirical data

clearly deviate from this ratio in the delta and theta frequency

bands. The scalp map shown illustrates that the deviation from

random phase at 6Hz is particularly large at midline frontocen-

tral locations, consistent with the scalp topography of the Ne/

ERN component. Evidently, these ERP data are characterized

by event-related synchrony; that is, by nonrandom distribution

of phase in the EEG.

However, as described above in the context of Analysis 1,

phase coherence is not uniquely diagnostic of phase resetting.

The present analysis provides further evidence of this point: As in

the empirical data, the simulated data show much higher ERP
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power than would be expected by chance, and particularly so at

midline frontocentral scalp locations (Figure 7, bottom right

panel). This pattern of results is not due to synchronization of

oscillations, because no synchrony is present in the simulated

data. Instead, the results follow from the fact that the contribu-

tion to the EEG from the fixed-latency phasic peak has power at

a range of frequencies, and a phase (i.e., latency) that is consistent

across epochs. Consequently, the phase of the EEG is unevenly

distributed, and hence there is greater power in the ERP than

would be expected by chance for all frequencies at which there is

energy in the phasic peak. These results demonstrate that the

observation of greater spectral power in the ERP than is expected

by chance does not constitute unambiguous evidence that syn-

chronized oscillations are present.

General Discussion

Our simulation results suggest that the analysis methods we have

evaluated do not provide unambiguous evidence of phase syn-

chronization of ongoing oscillations. Themethods eachmake the

assumption that the presence in the EEG of phase-coherent ac-

tivity within a particular frequency band may be taken as evi-

dence of event-related synchronization of oscillations. To the

contrary, our simulations suggestFperhaps counterintuitive-

lyFthat phasic bursts of neural activity may result in a similar

type of phase-coherent oscillatory activity: The ‘‘oscillations’’

represent specific frequency components of the phasic activity,

and the ‘‘phase-coherence’’ is caused by consistent time-locking

of the phasic activity to experimental events. In this way, event-

related synchronization of oscillations and phasic bursts of

neural activity may share many fundamental physical char-

acteristics. It follows that these physical characteristics cannot

be used as diagnostic markers of the presence of either kind

of activity.

The most direct implication of our findings is that new anal-

ysis methods are required to distinguish between phasic activity

and phase resetting, particularly in situations where there are

increases in both power and intertrial phase coherence. Our sim-

ulation results suggest that in such situations there may not be

clear, qualitative differences in activity generated by phasic neu-

ral events and by synchronization of ongoing oscillations. In-

stead, it may be necessary to focus on detailed, quantitative

features of the data. For example, phasic bursts of activity typ-

ically contain energy at a range of spectral frequencies, whereas

oscillatory activity can be restricted to a narrow frequency band.

Conversely, whereas oscillatory activity may be temporally ex-

tended across multiple cycles of a particular frequency band,

phasic activity is by definition temporally limited (notwithstand-

ing the possibility of multiple successive phasic peaks; cf. Man-

gun, 1992). Thus, one potentially fruitful approach for future

research will be to develop quantitative measures of the extent to

which increases in power and phase coherence are spread in the

time and frequency domains.

It may also prove useful to combine these new quantitative

approaches with other methods that can be used to separate
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activity from different neural sources, such as dipole modeling

(e.g., Luu, Tucker, Derryberry, Reed, & Poulsen, 2003), Lap-

lacian transformations (e.g., Vidal, Burle, Bonnet, Grapperon, &

Hasbroucq, 2003), and spatial component analyses (e.g., ICA;

Makeig, Westerfield, et al., 2002). The question addressed by

these methodsFof which neural sources contribute to observed

EEG scalp distributionsFis strictly orthogonal to the question

of the nature of neural activity (phasic or oscillatory) within those

sources. Nevertheless, spatial decomposition may be combined

with analysis methods specifically aimed at distinguishing be-

tween phasic and oscillatory activity. The notion would be to

preprocess the data to isolate activity in particular brain regions,

then to subject this activity to rigorous, formal analyses to char-

acterize the nature of activity within those brain regions.

In the context of new methods development, an important

implication of the present research is that a useful approach to

validating analysis methods is to apply them to simulated data

sets. For example, extending the example above of new quan-

titative analysis methods, one might generate two data sets, one

containing phasic events and the other synchronized oscillations.

One could then compare the analysis results for these two data

sets to establish the boundary conditions of variability in the time

and frequency domains that distinguish between phasic and os-

cillatory activity. In this way, the new analysis methods could be

rigorously evaluated against the known structure of the simulat-

ed data sets, before the methods are applied directly to empirical

data (the structure of which can only be inferred).

Thus, the primary implication of the present research is

methodological: Our findings suggest that the methods we have

evaluated may not provide clear adjudication between the clas-

sical and synchronized oscillation theories of the origin of ERPs.

Our findings do not challenge the general claim that rhythmic

activity in the EEG contributes to ERPs. Indeed, there already

exists evidence from other methods for the contribution of syn-

chronized oscillations to the ERP (Klimesch et al., 2004;Makeig,

Westerfield, et al., 2002; Rizzuto et al., 2003; Sayers et al., 1974),

and there is increasing evidence for the importance of synchrony

in ongoing oscillatory neural activity as a general organizing

principle of the brain (Engel, Fries, & Singer, 2001; Salinas &

Sejnowski, 2001; Varela, Lachaux, Rodriguez, & Martinerie,

2001; Ward, 2003; although see Shadlen & Movshon, 1999 for a

dissenting voice). In this context, an important avenue for future

research will be to investigate the extent to which observations of

synchronous activity between brain regions (e.g., Klopp, Mar-

inkovic, Chauvel, Nenov, & Halgren, 2000; Mima, Oluwatimi-

lehin, Hiraoka, &Hallet, 2001; Rodriguez et al., 1999) are due to

coincident bursts of phasic neural activity versus between-region

synchronization of ongoing oscillatory activity.

Finally, we note that our simulation results do not prove that

the Ne/ERN reflects a transient burst of neural activity rather

than synchronized theta oscillations. Nor do our simulations

bear on the ongoing debate between competing functional the-

ories of the Ne/ERN in terms of error detection (Falkenstein et

al., 1990; Gehring et al., 1993), reinforcement learning (Holroyd

& Coles, 2002), action regulation (Luu et al., 2003), or response

conflict monitoring (Yeung et al., in press). Indeed, it remains an

open question whether the nature of underlying neural activity

will have significant impact on this theoretical debate. For ex-

ample, the conflict monitoring theory proposes that the Ne/ERN

reflects the detection of response conflict in the period after in-

correct responses (Yeung et al., in press), but does not specify

whether detection of conflict leads to phase resetting of ongoing

theta oscillations or phasic bursts of activity. In either case, var-

iability in the degree of conflict across experimental conditions

would be reflected in variability in the amplitude of the Ne/

ERNFexactly the prediction made by the existing theory (Ye-

ung et al., in press). Similarly, the reinforcement learning the-

oryFwhich holds that the Ne/ERN is associated with a phasic

reduction in dopamine (Holroyd & Coles, 2002)Fis agnostic on

whether this dopamine reduction causes a phasic burst of neural

activity or phase resetting of EEG theta rhythms in medial fron-

tal regions (e.g., Luu & Tucker, 2002). Thus, an issue to be con-

sidered in future research is the extent to which debates about the

neural basis (phasic or oscillatory) of particular ERP compo-

nents should influence theoretical debates about the functional

basis of those components.
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