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Abstract

‘Phase amplitude coupling’ (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher
frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity – also referred to
as ‘cross-frequency coupling’ or ‘nested rhythms’ – has been shown to occur in a number of brain regions and at
behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of
PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing
how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing
patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating
input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory
input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse
neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how
connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity,
importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model
can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data.
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Introduction

There is a growing body of evidence demonstrating that

oscillatory activity at various scales within the brain is correlated

with behavior in a task-dependent manner [1–7]. This has

prompted the hypothesis that oscillatory activity may be produced

and dynamically modulated by the nervous system in order to

effectuate various executive functions [8–14]. Oscillatory neural

activity is traditionally binned into several commonly occurring

frequency bands that appear to predominate during particular

behaviors [1]. These different frequencies can co-occur and there

is increasing interest in how activities occurring at two different

frequencies dynamically modulate one another [15], producing a

form of coupling between oscillations of different frequencies that

could allow for the integration of information across multiple

spatial and temporal scales [16,17]. It has been suggested that a

hierarchy of interacting oscillations could segment the conscious

experience into discrete, serial processing windows [18–21]; for

example, consecutively visited places in an environment might be

encoded as the ordered firing of place cells relative to a theta cycle

oscillation in the hippocampus, in order to maintain conscious

awareness of current position [22]. The sequential order of

memorized items in a list might be encoded in a similar way

[23,24].

Coupling between different frequencies of neural activity can

take three forms: phase-phase coupling, amplitude-amplitude

coupling and phase-amplitude coupling [9,15]. The latter is the

focus of the modeling work presented here; we will demonstrate,

using a canonical circuit consisting of excitatory and inhibitory

neural populations, how phase-amplitude coupling (referred to

henceforth as PAC) can occur and how the particular type of PAC

can be manipulated by varying the model parameters.

PAC is said to occur when the amplitude envelope of a high-

frequency oscillation varies with the phase of a slower oscillation.

The first recorded example of this type of coupling was found to

occur between theta (4–12 Hz) and gamma (40–100 Hz) band

activity in the hippocampus [25–28]. Theta-gamma PAC activity

has also been recorded in human neocortex [29], occipital and

frontal regions [30,31] and medial temporal lobe [32]; it has also

been found to occur between various regions involved in auditory

attentional control in humans [33]. These studies have shown

behavior-related changes in PAC during short-term memory,

working memory and word recognition tasks. There are also

reports of PAC occurring between various other frequency band

combinations [16,17,30,34,35]; whatever the constituent frequen-

cy combinations, PAC tends to occur most strongly during

cognitively demanding epochs of tasks.
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Studies of theta-gamma PAC in rodents have been particularly

illuminating regarding dynamic changes in PAC as well as its

functional correlates. It has been shown that theta-gamma PAC

can occur both within and between brain structures, for example

within and between the hippocampus and the striatum; [36]. In

this study PAC activity varied in strength from no coupling to

strong coupling and back to no coupling over a period of a few

seconds, with the strongest coupling occurring whilst the animal

listened to a tone indicative of which turn to make in a maze-based

task. Theta-gamma PAC in CA3 of the rodent hippocampus has

been found to increase in strength during learning of an item-

context association task [37] (a similar result has been demon-

strated in inferotemporal cortex of sheep following learning [38]).

Rodent studies have also revealed theta-gamma coupling occur-

ring between hippocampal regions and entorhinal cortex; three

different frequency bands within the gamma range have been

found to couple to different phases of the hippocampal theta

rhythm and the studies’ authors suggest that these bands could

provide multiple separate channels of communication between the

two structures [39,40]. There is also evidence that theta-gamma

PAC occurring between hippocampus, prefrontal cortex and

entorhinal cortex increases with learning [41].

Various single and multi-compartmental models that are able to

produce theta-gamma PAC activity are reviewed in [42]. These

models focus on modeling oscillations in the hippocampus,

specifically how purely inhibitory and excitatory-inhibitory

networks of cells can generate network gamma oscillations, how

single neuron models can produce resonant theta oscillations (the

role of oriens-lacunosum moleculare cells and the Ih and A

currents appear to be particularly important) and how theta-nested

gamma activity can arise from a combination of the two. The

model of White et al. [43] uses a network of purely inhibitory

Hodgkin-Huxley neurons of two types, one with long inhibitory

post-synaptic potentials (IPSPs) and one with short IPSPs, to

produce theta-gamma PAC activity (however this behavior is

found to be un-robust in the absence of periodic input). Networks

of excitatory and inhibitory integrate-and-fire (IF) neurons have

also been used to generate theta-gamma coupled activity [23,44]

for the purpose of exploring possible functional mechanisms and

how the strength of coupling might change during learning. The

model of Zhang et al. [44] is similar in circuit structure to the ‘‘E-I-

O’’ model presented by Kopell et al. [42] (E – excitatory, I –

inhibitory, O - oriens-lacunosum moleculare cells, which are

inhibitory and theta resonant) but uses networks of IF neurons for

each of the constituent populations: an excitatory population, an

inhibitory population with fast GABAergic currents responsible for

generating gamma oscillations and an inhibitory population with

slow GABAergic currents responsible for generating theta

oscillations. The model of Lisman and Idiart [23] uses an imposed

theta oscillation (which produces both depolarizing and hyperpo-

larizing effects), combined with the effects of an afterdepolarization

potential, to periodically bring excitatory IF neurons above firing

threshold, whilst gamma frequency rhythmicity of their spikes is

ensured by inhibitory feedback.

The defining feature of these previous PAC models is that

gamma frequency oscillations arise due to the choice of time

constants involved in interactions between E-I or I-I populations of

cells (such oscillatory behavior is typical of pyramidal-interneuron

gamma (PING) [45–49] or interneuronal gamma (ING) [48,49]

networks). This gamma activity is then periodically inhibited by a

theta rhythm, which is imposed by either an external source [23]

or theta resonant cells within the network [42–44]. The topology

of the model we will present here echoes this, with a network

gamma rhythm being generated by the interaction of an E and an

I population and theta frequency external input being received by

either population. However, our model serves to illustrate that

gamma activity is not required to be the default mode of the

system in the absence of theta frequency input but can instead

require some level of external input to arise. The magnitude of

theta frequency input can act as a bifurcation parameter that

moves the system into a gamma-oscillation-producing regime. If

the range of input values that produce gamma oscillations in the

system is bounded, as in our model, then it is possible to use the

input to control which phase of theta the gamma oscillations are

locked to: the peak, the trough or the ascending and descending

phases.

Previous PAC models demonstrated coupling to the peak or the

trough of the low frequency rhythm but not to the ascending and

descending phases. There is empirical evidence that high

frequency activity may be coupled not just to the peak of the

low frequency oscillation [50,51] but also to the trough [29,36,52]

and to the ascending [36] and descending phases separately

[39,50,51]. It is postulated that coupling of gamma activity to

different phases of theta oscillations within hippocampal CA1

could facilitate the interpretation of incoming information from

two distinct channels (CA3 and entorhinal cortex) [39]. Our model

can be used to produce coupling to the full variety of phases of the

low frequency rhythm that have been observed empirically. We

use a modified Wilson-Cowan firing rate model [53] to show how

theta frequency input received by either the excitatory or the

inhibitory population can move the system periodically in and out

of the regime in which it produces intrinsic gamma frequency

oscillatory activity. The result is a generally applicable model in

which gamma band activity is produced at a particular phase of

the theta frequency input.

Methods

Description of the model
In order to create a model to compare with empirical evidence

of PAC occurring in local field potential recordings, we chose to

model dynamics at the population level, in terms of the average

firing rate of local populations of neurons. This approach follows

the model introduced by Wilson & Cowan [53]. The model

consists of a single excitatory and a single inhibitory neural

population that are reciprocally connected (see Figure 1A). The

excitatory population also sends a recurrent projection to itself.

This recurrent connection is required for the model to be able to

produce intrinsic oscillations (refer to [53]; we discuss the necessity

of this assumption in the next section). Both populations

experience some inherent leak in their activity levels as a result

of the passive electrical properties of component neurons. Both

populations also receive independent external inputs, assumed to

be from other neural populations or brain regions. The activity of

each population is modeled as a sigmoidal response function of the

inputs to that population (Figure 1B and Equation (2)).

The model is described by the following continuous-time

differential equations:

tE
_EE~{Ezf hEzwEEE{wIEIð Þ

tI
_II~{Izf hIzwEI Eð Þ

ð1Þ

Here E and I denote the average activity levels of excitatory and

inhibitory populations. hE and hI are the external inputs to the two

populations, E and I respectively. wEE, wEI and wIE are the

weights on the various connections in the model and tE and tI are

characteristic time constants, which correspond physiologically to
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the membrane time constants of particular neural populations. In

all the simulations presented in this paper these time constants

were set such that what we will describe as the intrinsic frequency

response of the system, when forced with external input hE = 0.5,

hI = 0, is a 55 Hz (gamma) oscillation (tE = tI = 0.0032 s, equiv-

alent to the natural frequency of the system (0.176 Hz) divided by

the desired (gamma) frequency of 55 Hz). It should be kept in

mind that the frequency of oscillations generated by the system is a

function of all the model parameters, including the inputs hE and

hI and will vary with these accordingly; however large variation in

the frequency (.a few Hz) is only seen when parameter values are

close to bifurcation points. The weight parameters also remain the

same for all simulations that follow; wEE = 2.4, wEI = 2 and

wIE = 2. These are sample parameter values for which the system

can generate oscillations and the range of values of hE and hI that

correspond to observing oscillations in the system is bounded.

Extensive analysis of the Wilson-Cowan model for particular

values of the weight parameters are given in [54,55] and highlight

the wide range of bifurcations and behaviour that are possible in

the model.

The sigmoid response function f(x) was chosen as:

f xð Þ~ 1

1ze{b x{1ð Þ ð2Þ

The b parameter, which determines the steepness of the sigmoid

function, was set equal to 4 in all the results that will be presented

(this value results in the derivative of f(x) being equal to 1 at its

steepest point). This choice of sigmoidal response function is

slightly altered from that used in the original Wilson & Cowan

model. Note that f (0).0 (see Figure 1B), as opposed to f (0) = 0,

which was employed by Wilson & Cowan to make the state

corresponding to zero firing rate activity stable. Hence, even when

a population receives zero input in our model it can still produce

firing rate activity. We consider this modification biologically

plausible since neurons within a population may produce

spontaneous spiking.

Conditions for generation of intrinsic oscillations
The topology shown in Figure 1A is capable of generating

oscillations since the reciprocal connections between the E and the

I populations form a canonical negative feedback circuit. If the

activity of E increases so too does the activity of I, which then

inhibits E and lowers its activity level. This in turn lowers I’s

activity level and if the system is correctly parameterized inhibition

will be lowered sufficiently for E to increase its activity level again.

This process repeats cyclically, producing oscillations in both E

and I’s activity levels. The addition of positive feedback from E to

itself is intended to amplify E, allowing E to increase its activity

level more rapidly than the activity of the I population can quench

E and damp oscillations. The mathematical analysis that follows

demonstrates the importance of this positive feedback connection

(wEE) for the generation of oscillations in our model. We also use

mathematical analysis to demonstrate how the external inputs to

the model, hE & hI, affect the dynamical behavior and the

generation of intrinsic oscillations.

Understanding when and how this system (Equation (1))

behaves as an oscillator is possible via analysis of the system’s

nullclines and their arrangement in the E, I phase plane.

Oscillatory solutions of a system occur when there is a limit cycle

present in the system’s phase plane. The Poincaré-Bendixson

theorem [56] says that a limit cycle must exist inside a trapping

region (a region of the phase plane that all trajectories are

attracted towards and cannot escape) if all the equilibria within

that region are unstable. Trajectories that our system can take are

subject to an inherent trapping region in the phase plane (E = [0,

1], I = [0, 1]), due to the limits of the populations’ sigmoidal

response functions. We will now use analysis of the system’s

nullclines to consider when a single unstable fixed point exists in

Figure 1. Diagrammatic representation of the PAC model (A) and the choice of sigmoidal response function (B). A: grey arrows
represent excitatory connections (+), black circles represent inhibitory connections (2). All weights in the model are positive, excitatory or inhibitory
connections appear as +/2 signs in the model equations (Equation (1)). External input can be received by either the E or the I population. Mid-grey
arrows represent the leak in activity levels as a result of passive membrane properties. B: the exact shape of the sigmoid chosen (Equation (2)). The
mean threshold is at x = 1. b= 4.
doi:10.1371/journal.pone.0102591.g001
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the system’s phase-plane and hence a limit cycle exists and the

system behaves as an oscillator.

The nullclines of the system can be found by setting the

derivatives in (1) to 0:

0~{Ezf hEzwEEE{wIEIð Þ ð3Þ

0~{Izf hIzwEI Eð Þ ð4Þ

We solve equations (3) and (4) for I to produce equations (5) and

(6).

I~

hEzwEEE{1z1=b ln
{Ez1

E

� �
wIE

ð5Þ

I~
1

1ze{bhI {bwEI Ezb
ð6Þ

The I-nullcline (Equation (6)) has a typical sigmoidal shape; the

E-nullcline (Equation (5)) takes the shape of an inverse sigmoid

function. These two nullclines are plotted in black and light grey

respectively in Figure 2A. The parameter values used to generate

this figure are such that the nullclines only cross at a single point,

forming the only equilibrium of the system. Due to the

characteristic shape of the two nullclines it is possible for one,

three or five intersections (i.e. equilibria of the system) to exist.

Adjusting the weight parameters and the b parameter in the

model alters the steepness of the slopes of the nullclines. In

particular, wEE, wEI and b can effect whether the E-nullcline has

the characteristic ‘S-shape’ shown in Figure 2A (with two turning

points) or whether it is an always decreasing function resembling a

sigmoid rotated 90u counter-clockwise about its inflection point. In

the latter case it is only possible for the two nullclines to cross at a

single point. When the system’s nullclines intersect in this fashion,

i.e., at a point where the E-nullcline is decreasing and the I-

nullcline is increasing, then the equilibrium that is formed is always

stable. This can be shown by considering the system’s Jacobian,

which is evaluated at the equilibrium point (E*, I*):

J~

{1zwEE f 0 hEzwEE E�{wIE I�ð Þ {wIE f 0 hEzwEE E�{wIE I�ð Þ

wEI f 0 hI zwEI E�ð Þ {1

" #
ð7Þ

Notice that the sign of all the terms in the Jacobian is fixed, with

the exception of the first term. It is known that an equilibrium

point will be stable if the trace (tr) of the Jacobian (equivalent to

the top left term plus the bottom right term in (7)) is negative and

the determinant (D) (equivalent to the product of the top left and

bottom right terms minus the product of the bottom left and top

right terms in (7)) is positive [56]. This follows from the ability to

formulate analytical expressions for the eigenvalues of the system

as a function of tr and D (see [56] for details of this derivation):

l1~
trz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2{4D
p

2
l2~

tr{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2{4D
p

2
ð8Þ

When tr is negative and D is positive both eigenvalues will have

negative real parts and hence that point in the phase plane will be

a stable fixed point. In our system this requirement will always be

satisfied when the first term of the Jacobian is negative; since the

bottom right term is always negative, when the first term is

negative the sum of these two terms (i.e. tr) will always be less than

zero, whilst D will always be positive. The first term of the

Jacobian will always be negative if wEE,1, because the slope of

the sigmoid function never exceeds 1 for our choice of b = 4. Thus

if wEE,1 the fixed point will be stable. When wEE#1 we can also

be sure that this is the only fixed point in the system; following

Wilson and Cowan [53], consider when the gradient of the E-

nullcline at its inflection point (E = K) is less than zero, this

produces Equation (9):

bwEE{4

bwIE

v0 ð9Þ

For the choice of b = 4, if wEE#1 Equation (9) is satisfied and the

E-nullcline is an always decreasing function, whilst the I-nullcline

is always increasing, therefore they can only intersect at a single

point.

The gradient of the E-nullcline is equivalent to the quotient

formed by dividing the first term in the Jacobian (Equation (7)) by

the top right term and multiplying the result by 21 (see

Mathematical Appendix for details of this derivation). Since the

top right term in the Jacobian is always negative the gradient of

the E nullcline will be negative when the first term in the Jacobian

is negative and positive when the first term is positive. So the

gradient of the E-nullcline is closely tied to the stability of any fixed

points; when the gradient is negative so is the first term in the

Jacobian and so the fixed point will be stable (tr is negative, D is

positive and both eigenvalues have negative real parts as we have

previously shown). When the gradient of the E-nullcline is positive

so is the first term in the Jacobian and the fixed point may not be

stable (dependent upon the parameter values which make up the

Jacobian).

Any limit cycles that exist in a planar system must enclose at

least one fixed point [56] and in the case of only one stable fixed

point one cannot guarantee the existence of a limit cycle in the

system’s phase plane and hence that the system will generate

intrinsic oscillations. Therefore, if the parameters of the system are

such that the two nullclines only intersect at one point then the

non-negative gradient of the E-nullcline at that point is a necessary

condition for the system’s only equilibrium to be unstable and for

the system to produce oscillations as it follows a limit cycle

trajectory around that unstable point (an example of this situation

is given in Figure 2A).

Results

Dependence of oscillations on the constant input to E
population

Here we report simulations in which we subjected the model to

increasing levels of constant input to the E population, in order to

verify that for certain values the system behaves as an oscillator.

Both the E and I populations started with an initial value equal to

zero. Some examples of the results of these simulations are shown

in Figure 3. For low values of the input to the E population, hE,

the activity level of both populations converges to a steady state

value (Figure 3A). However at a critical value of hE both E and I

begin to show oscillatory behavior (Figure 3B). As hE is increased,

the frequency of oscillations increases (Figure 3C). Further

increase in hE results in a decrease in the oscillations’ amplitude

(7)

A Canonical Circuit for Generating Phase-Amplitude Coupling

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e102591



and frequency (Figure 3D) and increasing hE past a second critical

value results in the two populations converging to a steady-state

equilibrium once again. This appearance and disappearance of

oscillatory behavior as hE is varied is summarized in Figure 3E.

Both the amplitude and the frequency of the oscillations are

dependent on the value of hE.

In order to confirm the bifurcation mechanism underlying this

change in the dynamical behavior of the system and to determine

the values at the bifurcation points, we conducted a continuation

analysis of the model (Equation (1)) using the continuation

software AUTO [57]. Continuing the initial steady state equilib-

rium which the populations reach for hE = hI = 0, using hE as the

continuation parameter, produced the bifurcation diagram shown

in Figure 3F. This diagram demonstrates that a Hopf bifurcation

point precedes the appearance of oscillations in the system (a Hopf

bifurcation refers to the point at which the complex conjugate

eigenvalues evaluated at an equilibrium of the system simulta-

neously change the sign of their real parts, leading to a

corresponding change in the stability of that equilibrium). The

disappearance of oscillations occurs in a similar way, following a

Hopf bifurcation. Oscillations occur in the region between these

two points, where only a single unstable equilibrium exists (as

suggested by the Poincaré-Bendixson theorem and the presence of

a trapping region in the system’s phase plane). Although for the

parameters we used the oscillations appeared through a Hopf

bifurcation, for larger values of wEE they can appear through

different bifurcations as discussed by Onslow [58].

Generation of PAC via oscillatory input to E population
In the simulations described in this section the model was

subjected to a theta frequency input oscillation to the E population

of varying amplitude and mean. The inputs used in a simulation

are plotted in the top panels of Figures 4A–E, while the labels in

Figure 4F summarize the ranges of the inputs used in panels A–E.

Since there exists a bounded region of values of hE that permit the

system to act as an oscillator and produce oscillations at its intrinsic

frequency of 55 Hz (Figure 4F), this theta frequency input can

move the system in and out of this region periodically. The result is

gamma frequency oscillations phase-locked to different phases of

the theta frequency input oscillation depending on the amplitude

of the input. Depending on where the maximum and minimum

values of the theta frequency input to the E population fall in

relation to the bounded region for oscillations (Figure 4F) coupling

to different phases of the input oscillation can be observed.

If the oscillatory input to E is of low amplitude (below the

critical value at which the model produces intrinsic oscillations

(hE_CR1 = 0.399974, Figure 3F, point 1) then the E population will

tend to produce small amplitude oscillations of the same frequency

(Figure 4A) as the input. The I population produces comparatively

smaller amplitude oscillations at this frequency. However, if the

input to E is such that its peak is above the critical value for the

Figure 2. Analysis of the system’s nullclines. A: phase plane of the system for hE = 0.7, hI = 0. E-nullcline (Equation (5)) (light grey), I-nullcline
(Equation (6)) (black), trajectory beginning at E = 0,I = 0 (mid grey), vector field (black arrows). Intersection of nullclines corresponding to equilibrium
at E = 0.46, I = 0.42. The eigenvalues of the system at this point are l1 = 1.16+2.64i, l2 = 1.1622.64i, hence this equilibrium is unstable and trajectories
converge to a limit cycle. B: effect on the E-nullcline of increasing input to the E population (hE) from 0.2 to 1. C: effect on the I-nullcline of increasing
input to the I population (hI) from 0.2 to 1.
doi:10.1371/journal.pone.0102591.g002
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appearance of oscillations then the model exhibits PAC. Gamma

frequency oscillations are able to occur around the peak phase of

the theta input and appear to be nested within the slower input

rhythm (Figure 4B). If the peak of hE is above the critical value for

the disappearance of oscillations (hE_CR2 = 1.199932, Figure 3F,

point 2), but its minimum is above hE_CR1, then the opposite

qualitative type of PAC occurs; the high frequency oscillation

occurs around the trough of the oscillating input (Figure 4D).

If the theta frequency hE has its maximum and minimum values

between hE_CR1 and hE_CR2, then the two populations produce

high frequency oscillations with close to constant amplitude but

which contain a periodic variation in their mean value of the same

frequency as hE (Figure 4C). If the minimum value of hE is below

hE_CR1, whilst the maximum is above hE_CR2, then the E and I

populations are able to produce gamma frequency oscillations

locked to the ascending and descending phase of hE (Figure 4E).

If the oscillatory input to the system is too fast relative to the

system’s intrinsic frequency then it could be difficult or impossible

to observe one or more cycles of the faster intrinsic oscillation,

since the system will move out of the oscillatory regime before a

full intrinsic cycle is completed. It is the absolute value, not the

frequency, of the input which determines the configuration of the

nullclines and therefore whether the system is in an oscillatory

regime and at what intrinsic frequency.

Dependence of oscillations on the constant input to I
population

Initial simulations indicated that for the default parameter

values we use it was not possible for the model to produce

Figure 3. Behaviour of the model for a range of constant inputs, received by the E population only. Pictures A–D: output activity of the
two populations E (grey) and I (black) when receiving constant input to E population of (A) 0.2, (B) 0.4, (C) 0.7 and (D) 1.18. E: maximum and minimum
values of the E population’s output activity are plotted (grey line) in order to display the region where these values differ and oscillations appear.
Arrows indicate examples A–D. F: bifurcation diagram generated by continuation of the model’s steady state equilibrium (hE = hI = 0, initial conditions:
E = I = 0, equilibrium reached: E = 0.0181, I = 0.0207). Labelled points: (1) Hopf bifurcation, hE = 0.399974, (2) Hopf bifurcation, hE = 1.199932.
doi:10.1371/journal.pone.0102591.g003
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oscillations when input is given to the I population only. However

for certain values of a constant input to E, varying a constant input

to the I population will cause the system to move between a regime

in which it produces intrinsic oscillations and one in which it does

not. Figure 5 demonstrates this for a constant value of hE = 1.3.

The initial values of E and I are always zero. Figure 5E

summarizes how increasing the value of hI leads to first the

appearance and then a gradual disappearance of oscillations in the

system.

The oscillations that the system demonstrates as hI is varied

have a different shape to those seen when hE was varied. Whereas

in the latter case the activity level of the populations started at a

low level and oscillations appeared as first an increasing then a

decreasing activity level, in the case of varying hI the activity levels

of the populations start at a high level and oscillations appear as a

decreasing, followed by an increasing activity level (see Figure 5B

& C).

Continuation of the initial steady state equilibrium when

hE = 1.3 and hI = 0 shows that very rapidly a stable equilibrium

of the system becomes unstable through a Hopf bifurcation (at

hI = 0.105812). This marks the appearance of oscillations in the

model. At hI = 0.523650, the unstable equilibrium becomes stable,

again through a Hopf bifurcation. After this point the eigenvalues

defining the equilibrium are still complex but with negative real

parts, therefore trajectories spiral towards the stable equilibrium,

resulting in the damped oscillations seen in Figure 5D.

Generation of PAC via oscillatory input to I population
We forced the I population with a theta frequency oscillatory

input, whilst the input to the E population was kept at a constant

level of 1.3. Examples of the model’s response to various amplitude

oscillatory inputs are shown in Figure 6. Both the E and I

populations started with an initial value equal to zero.

When the minimum and maximum values of the oscillatory

input are below the critical value marking the appearance of

oscillations (hI_CR1 = 0.105812, Figure 5F point 1), the E and I

population produce low amplitude oscillations of the same

frequency as hI (Figure 6A). If the minimum value of hI is below

hI_CR1, whilst the maximum value is above hI_CR1, then during the

peaks of hI the system is able to produce intrinsic, high frequency

oscillations, which appear nested within the slower input rhythm,

demonstrating PAC (see Figure 6B). This situation is reversed if

the minimum value of hI is above hI_CR1 whilst the maximum

value is above the critical value at which the Hopf bifurcation

occurs (hI_CR2 = 0.523650, Figure 5F point 2). In this case the

system would be expected to produce gamma oscillations during

the trough phase of hI (see Figure 6D). However, due to the

gradient and shape of the ‘window’ for oscillatory behavior in this

case (compare Figure 6F to Figure 4F), these oscillations appear to

be more strongly coupled to the ascending phase of theta

measured at the source of the input signal (Figure 6D top panel)

and to the descending phase of theta measured in the local

population (Figure 6D bottom panel).

If the minima and maxima of hI occur between the two critical

values hI_CR1 & hI_CR2, then the system constantly produces high

frequency oscillations, but with a mean value which varies with the

same frequency as hI (Figure 6C). If the minima and maxima are

such that hI moves periodically in and out of the region in which

the system produces intrinsic oscillations, then the system attempts

to produce high frequency oscillations on both the ascending and

descending phases of hI (Figure 6E), resulting in what appears to

be gamma activity locked to the descending phase of every other

cycle of a 8 Hz theta oscillation.

Figure 4. Behaviour of the model for a range of oscillatory inputs, received by the E population only. A–E: top panel shows the theta
frequency oscillatory input to the E population; bottom panel shows the output of the E (grey) and I (black) populations. F: maximum and minimum
values of the E population’s output activity are plotted (grey line) in order to display the region where these values differ and oscillations appear.
Brackets indicate the extent of the theta frequency input’s amplitude in each of the examples A–E.
doi:10.1371/journal.pone.0102591.g004
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Range of behaviour possible through variation of
parameters

In order to summarize the constant values of hE & hI that

produce oscillations in our system we ran multiple experiments in

which we incrementally increased hE & hI with a step size of 0.01.

The result is shown in Figure 7A, in which values of hE & hI that

produce oscillatory behaviour are shown in red and values that

converge to a steady-state equilibrium are shown in blue. This

region of input values that leads to oscillatory behaviour in the

model is also discussed in [58].

Figure 7B shows the results of the same multiple experiments

that produced Figure 7A but with the parameter wEI in the model

changed from 2 to 2.5. This results in a decrease in the size of the

region for oscillatory behaviour (shown in red). In simulations this

decrease in the size of the oscillatory region leads to smaller

amplitude gamma oscillations occurring during each theta cycle,

as can be seen when comparing Figure 7C (a simulation in which

all parameters are set to their default values) and Figure 7D (a

simulation in which wEI = 2.5, all other parameters take default

values).

If both hE & hI are oscillatory and of different frequencies then a

variety of different behaviours can be observed in the system. For

example, if hE = 4 Hz whilst hI = 2 Hz, as shown in Figure 7E,

then it is possible to observe gamma coupled to alternate cycles of

the 4 Hz theta input rhythm. If the phase difference between an

oscillatory hE and an oscillatory hI is non-zero then this can also

produce various interesting behaviours, including gamma activity

which is coupled to the ascending or descending phase of a theta

frequency input, as shown in Figure 7F. In this simulation the two

oscillatory inputs have the same frequency (4 Hz) but hE lags

Figure 5. Behaviour of the model for a range of constant inputs, received by the I population (hE = 1.3). Pictures A–D: output activity of
the two populations E (grey) and I (black) when receiving constant input to I population of (A) 0.05, (B) 0.12, (C) 0.4 and (D) 0.6. E: maximum and
minimum values of the E population’s output activity are plotted in order to display the region where oscillations appear. Arrows indicate examples
A–D. F: bifurcation diagram generated by continuation of the model’s steady state equilibrium (hE = 1.3, hI = 0, initial conditions: E = I = 0, equilibrium
reached: E = 0.8873, I = 0.9568). Labelled points: (1) Hopf bifurcation, hI = 0.105812, (2) Hopf bifurcation, hI = 0.523650.
doi:10.1371/journal.pone.0102591.g005
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behind hI with a phase difference of 30u; this produces I

population gamma activity that is locked to the ascending phase

of a 4 Hz theta rhythm.

Discussion

The results presented here demonstrate that PAC signals can

arise when a slowly varying input to a neuronal population alters

the dynamics of the local population-level network, such that at a

certain phase of the input both populations produce intrinsic high

frequency oscillations. For the network topology and parameters

used here, the range of input values which lead to intrinsic

oscillatory activity has both an upper and lower bound, enabling

the slowly-varying input to push the system into this region either

at its peak, during a trough or on both the ascending and

descending phase (Figures 4,6 & 7F). When the input was received

by the I population (whilst the E population received a

simultaneous tonic input), it was possible to observe gamma

activity which appeared to be locked to either the ascending or

descending phase of the theta frequency input (Figure 6 D & E,

ascending phase measured relative to theta frequency input itself

and descending phase measured relative to the local activity theta

oscillation). Coupling to the ascending phase was also demon-

strated in the I population when both hE & hI consisted of 4 Hz

theta oscillations but with a phase difference of 30u (Figure 7F).

Peak-locked [50,51] and trough-locked [29,36,52] theta-gamma

coupling have both been observed in vivo. There are also reports

of gamma activity phase-locked to the ascending [36] and

descending [39,50,51] phases separately, but as yet no reports of

gamma phase-locked to both the ascending and descending phases

of theta. There may be several reasons for this: one possibility is

that biologically realized parameter values make it unfeasible for a

slowly varying input to succeed in pushing the system through such

a wide range of dynamics; a second possibility is that this form of

PAC has been overlooked since only certain measures of PAC are

able to detect bi-phasic coupling [59]. Finally, due to the changes

in frequency experienced by the system as it passes through the

Hopf bifurcations, this type of PAC might instead have been

interpreted as the ‘concatenated rhythms’ phenomenon observed

by Roopun et al. [60], who witnessed gamma (50–80 Hz) and

beta2 (22–27 Hz) rhythms occurring alternately, as though locked

to two different phases of a slower rhythm.

The functional relevance of coupling between these two

rhythms remains to be confirmed but we would speculate that a

general function for theta-gamma PAC is as a mechanism to

integrate computations occurring on different time scales. For

example, the period of a theta cycle corresponds well with the time

taken to perform certain motor functions such as taking a step or

sniffing [61–64] and might therefore be appropriate for processing

the moment by moment environmental feedback received during

such activities and structuring a sequence of events encountered

within this typical time period. The much shorter period of

gamma oscillations might similarly lend itself to grouping the more

rapid (from the point of view of consciousness ‘spontaneous’)

experience of several sensory inputs which all relate to the same

percept [65,66], for example processing visual scenes and

recognizing objects within them whilst traversing a movement

trajectory. Through a strict, phase-locked relationship between

different frequencies, a hierarchy of computational processes that

all converge to construct each momentary conscious experience

might be effectively combined [18–21].

Our model is capable of reproducing other physiologically

observed neural activity besides PAC. For example, for certain

values of the weight and input parameters the model will produce

gamma frequency activity on every other cycle of a theta

Figure 6. Behaviour of the model for a range of oscillatory inputs, received by the I population only (hE = 1.3). A–E: top panel shows the
theta frequency oscillatory input to the E (grey) and I (black) populations; bottom panel shows the output of the E (grey) and I (black) populations. F:
maximum and minimum values of the E population’s output activity are plotted in order to display the region where oscillations appear. Brackets
indicate the extent of the theta frequency input’s amplitude in each of the examples A–E.
doi:10.1371/journal.pone.0102591.g006

A Canonical Circuit for Generating Phase-Amplitude Coupling

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e102591



Figure 7. Range of behaviour of the model when weight and input parameters are varied. A: constant input values hE & hI were increased
in incremental steps of size 0.01; if the resulting model activity was oscillatory the values are marked in red; if instead the E and I populations
converged to constant values then the hE & hI values are marked in blue. B: same experiment as in A but for all simulations wEI = 2.5 (all other
parameters take default values). The red region demonstrating oscillatory activity is smaller in comparison to that shown in A. C: example simulation
showing theta-gamma PAC when all model parameters are set to default values. Modulation Index (MI) calculated on E’s activity = 3.0. D: example
simulations showing theta-gamma PAC when wEI = 2.5 (all other parameters take default values); in comparison to D the gamma activity is lower
amplitude. MI calculated on E’s activity = 2.333. E: simulation in which both hE & hI are oscillatory; hE = 4 Hz, hI = 2 Hz (amplitude and mean of the two
input oscillations also differs, refer to top half of plot). Gamma activity appears locked to alternate theta cycles. F: simulation in which both hE & hI are
oscillatory; both input oscillations have a frequency of 4 Hz but which both hE lags hI by 30u (amplitude and mean again differ slightly, refer to top
half of plot). Whilst E demonstrates peak-locked PAC, I demonstrated gamma activity locked to the ascending phase of theta.
doi:10.1371/journal.pone.0102591.g007
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frequency input (Figure 7E, also the I population in Figure 6E).

This could potentially explain the observed theta-skipping

behavior found in entorhinal neurons [67,68], which appear to

fire locked to LFP theta oscillations but only on every other cycle.

The model is also capable of explaining the somewhat paradoxical

result that low concentrations of ketamine, a drug which is

understood to block excitation of inhibitory interneurons in

hippocampal regions [69], result in decreased theta power but

increased gamma power recorded in the LFP and EEG of mice

and humans [70,71]. Assuming theta frequency input is received

by the I population in our model (whilst the E population receives

a tonic input), if the I population were diminished in its ability to

respond to this input this could correspond to a smaller amplitude

and/or a lower mean value of the input theta oscillation in the

model. This could be sufficient to move the system from a regime

in which it produces gamma oscillations periodically, locked to the

trough of the theta input, into a regime in which the dynamic

range of the input is always within the boundaries for producing

gamma oscillations (Figure 6F). The result would be a persistent

gamma oscillation with a small amplitude theta variation of its

mean (see Figure 6C).

Two recent papers have demonstrated through computational

models and via optogenetic stimulation of layer II medial

entorhinal cortex that theta frequency input to a network of cells

can induce theta-gamma coupled activity [72,73], in-line with the

model presented here. Our model is also able to shed light on why

gamma oscillations appear to be so closely phase-locked to a

particular phase of a theta frequency optogenetic stimulation in

the results of Pastoll et al. [72]; since the network as a whole

crosses a bifurcation point at a given level of driving input.

Without crossing this bifurcation point gamma frequency oscilla-

tions are not produced as the resonant network rhythm, since no

limit cycle exists in the network’s phase plane. The computational

model results of Spaak et al. [73] suggest that differences in the

model architecture between excitatory and inhibitory networks

result in excitatory cells being more strongly biased than inhibitory

cells by the incoming theta frequency activity, in accordance with

physiological findings [74]. However, our model is able to suggest

why their network as a whole requires some level of constant input

to the excitatory population in order to generate PAC.

In contrast to the model presented here spiking neural networks

are able to generate oscillations without recurrent E-E connectivity

[75]. It is also the case that spiking networks of only inhibitory

neurons can generate oscillations, a behavior which is not possible

to observe in the firing rate model used here [76–78] but which

has been observed in vitro [79]. PAC activity has also been

demonstrated in purely inhibitory networks [43].

In order to compare our firing rate model with previous spiking

models, the spiking model description must be reduced to an

equivalent rate model description by assuming that synaptic

dynamics are slow compared to the dynamics that transform

synaptic input into firing rate [80–83]. This separation of time

scales exists due to effective delays incorporated into spiking

models by postsynaptic currents that persist for a period of

milliseconds and would correspond to the incorporation of explicit

time delays into the rate model discussed here; this could

potentially enable our model to produce intrinsic oscillations

without the current requirement for E-E connectivity. That a

purely inhibitory population of neurons that exhibits a time delay

on their recurrent connections can produce oscillatory behavior is

explored in detail in [58,76]. A detailed comparison between this

firing rate model and previous spiking network models remains as

a potential avenue for future work, however we note that several

recent studies have demonstrated good agreement between spiking

neural networks and their equivalent rate model descriptions

[84,85].

Future work will look to compare our firing rate framework

more closely with biophysically realistic network models, in order

to benefit from both an understanding of how nuances in

connectivity and synapses can create behavior which breaks from

the predictions of the mean field model and to use insights gained

from mathematical analysis of the mean field model to choose

which parameters to vary in order to witness bifurcations and new

network attractor states.

PAC and learning
There is evidence that the strength of theta-gamma PAC

increases with learning over several days whilst rats are performing

an item-context association task [37]. This could correspond either

to an increasing signal-to-noise ratio, as more local populations

engage in the same behavior demonstrated by our model, or to an

increase in the window of input values that generate intrinsic

oscillations in our model (window shown in Figures 3E & 5E; a

comparative increase in this window occurs when parameter wEI is

decreased from 2.5 to 2 – see Figure 7A&B). The latter could also

be combined with an increase in the amplitude of the low

frequency modulating input. If the window for intrinsic oscillations

were increased in size then a low frequency modulating input with

appropriate mean and amplitude could produce more high

frequency cycles within each low frequency cycle, as well as high

frequency cycle with a larger amplitude (Figure 7C & D), leading

to a stronger high frequency signal being detected. Since this

higher frequency signal always occurs at the same phase of the

lower frequency oscillation, this would be detected as stronger

theta-gamma PAC by the modulation index measure used in [37]

(MI calculated on the E population output in Figure 7C = 3.0, MI

calculated on the E population output in Figure 7D = 2.333).

We have demonstrated that the size of the window for intrinsic

oscillations can be varied through changes in the model’s synaptic

weight parameters; this could occur in vivo via either long-term

potentiation or depression during learning. The effect that

changing each individual weight parameter has on the shape of

the model’s nullclines has been investigated in [58]. Short term,

trial-length duration changes in PAC could be explained by

dynamic variation in the controlling external input, in contrast to

the longer term PAC variations brought about by changes in

synaptic strength. Tuning of the various model parameters could

affect not just the window of input values that produce PAC; it

could also alter the intrinsic frequency response of the system. An

increase in this frequency would make it possible to fit more

gamma cycles within a theta cycle. This would correspond to an

increased ability to store items according to the Lisman & Idiart

scheme [23]. It is also the case that a decrease in the frequency of

the theta input would allow more gamma cycles to fit within a

theta cycle, increasing storage capacity (theta activity has been

been shown to decrease in frequency in human subjects when they

are asked to maintain more items in working memory, possibly

indicating the need to allow more gamma cycles to nest within

each theta cycle [86]).

Relationship to empirical hippocampal data
Recurrent connections between excitatory and inhibitory cells

in the hippocampus are well established and their interaction is

understood to produce oscillatory activity. However, there is

debate over the role of recurrent connections between excitatory

cells in generating oscillatory activity, particularly at gamma

frequencies [87].
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Recurrent excitation is a common feature of neocortical

microcircuitry [88] and the structure of our model is intentionally

general in order to make it applicable to a variety of brain regions,

not just the hippocampus. Recurrent excitation between pyrami-

dal neurons is evident in regions such as prefrontal [89], visual

[90] and barrel cortex in rats [91], regions that are also known to

demonstrate gamma and theta-gamma-PAC oscillations [76,92].

Specifically in the hippocampus, there is evidence for recurrent

projections between excitatory cell types in regions CA1 [93] and

CA3 [94] which have both demonstrated coupled theta-gamma

PAC activity [27,37]. Although the recurrent excitatory projec-

tions within CA1 are believed to be less numerous than those

found within CA3, the effect of weak or sparse recurrent excitatory

connections in local hippocampal regions may be amplified by the

activity of astrocytes [95].

An alternative to the recurrent, positive feedback in E would be

the introduction of synaptic transmission delays into the model (see

[96] for example), delaying inhibition while E’s activity increases at

the start of the cycle and effectively amplifying the increase in E’s

activity. Whilst the topology and synaptic physiology of E-E and E-

I connections in neural circuits vary across different brain regions,

we chose to take advantage of the mathematical simplicity of a

model based on recurrent E-E connections. However, insights

from this model also apply to circuits with recurrent connections

functionally substituted by synaptic transmission delays.

Considering the architecture of our model as representative of

neural populations in the hippocampus, there is experimental

support for theta frequency input from medial septum being

received by both excitatory and inhibitory hippocampal neurons:

alongside glutamatergic projections from septal regions to

hippocampal pyramidal cells [97], there is also evidence for

cholinergic projections which target hippocampal pyramidal cells

and interneurons and GABAergic projections that exclusively

target interneurons [98–101]. The GABAergic projections to

hippocampal interneurons could provide the excitatory theta

frequency input used in our model by way of their disinhibitory

effect. A study by Wulff et al. [102], which ablated synaptic

inhibition in hippocampal parvalbumin-positive (PV) interneu-

rons, found that the loss of inhibition of these neurons led theta-

gamma coupling to change, from gamma locked to the peak of a

strong theta oscillation to gamma which occurred at all phases of a

weaker theta oscillation (i.e. gamma activity with a theta-varying

mean, as in Figure 4C). This could be explained in our model if

the loss of inhibition had the same affect as increasing the

excitatory drive in the model (hE), moving the system’s dynamic

range in such a way that it fits entirely within the window in which

intrinsic gamma oscillations are produced (Figure 4F).

A general circuit for PAC occurring in other brain regions
The general neural circuit presented here might also function as

a model for PAC activity occurring in a variety of other brain

regions, which receive a low frequency input and produce higher

frequency activity phase-locked to a particular phase of that input.

Theta-gamma PAC for example has also been reported in

prefrontal cortex [74] and entorhinal cortex [103]. Whilst this

activity could result from the interaction of gamma activity with

locally generated theta oscillations, it could also reflect cross-

structural interactions, since both structures receive theta frequen-

cy input from the medial septum [104–106] and prefrontal cortex

also receives theta frequency input from hippocampus [107].

Populations of neurons that form this characteristic circuit in

prefrontal and entorhinal regions would produce gamma frequen-

cy activity phase-locked to the theta frequency input. This

temporal relationship might facilitate a shared representation of

information between the sending and receiving structures, aiding

interpretation of this combined information downstream or

facilitating computation occurring in a feedback loop between

the two structures.

Conclusions

We have presented a firing rate model of two neural

populations, which is capable of producing high frequency

oscillations that are locked to certain phase(s) of a lower frequency

oscillatory input. This pattern of activity resembles the PAC

activity that has been recorded in electrophysiological data. The

amplitude, frequency and phase-locking characteristics of the PAC

activity generated are dependent on the strength of the connec-

tions in the model and on the amplitude and mean value of the

low frequency input signal. The input signal is responsible for

shifting the system periodically across a bounded region of input

values corresponding to a regime in which the system produces

intrinsic high frequency oscillations. Within this bounded region,

the limits of which coincide with Hopf bifurcation points, there

exists a single, unstable equilibrium in the system’s phase plane,

surrounded by a limit cycle, to which all trajectories of the system

converge. Therefore within this region the system behaves as an

oscillator and generates oscillations of characteristic frequency. It

is possible to tune the parameters of the model to produce different

frequencies of activity phase-locked to different phases of the input

rhythm, a feature which was not present in previous PAC models.

Our model suggests that if the phase of slow oscillations in one

area appears to modulate the amplitude of fast oscillations in

another area then it is possible that this first area sends a slow

frequency oscillatory input to the second area, which constrains

the timing of the fast oscillations produced there. This could in

turn constrain the firing of individual neurons in that local

population [77,84] and therefore prove functionally significant for

computational processes occurring collaboratively between the

sending and receiving regions, as well as regions downstream.

This work differs from previous models capable of generating

PAC in that its general, canonical circuit basis could apply to a

variety of brain regions. It has the ability to explain how PAC

activity might arise from population level mechanisms and how

the system might be varied in order for the high frequency activity

to lock to different phases of the low frequency input oscillation.

Future work will ideally look at comparing this model both with

experimental data and with detailed multi-single neuron models,

to examine its applicability to various neural circuits, the ensuing

parameterizations and how many neurons are required to make

up a representative population. Useful comparisons might also be

drawn in future between the general features of this population

level model and models of hyperpolarizing and depolarizing

currents in single neuron models, in order to explore PAC activity

observed in individual cell membrane potential traces [72]. Since

temporal relationships such as PAC occurring at the population

level might bias single neuron firing and influence neuronal

processing, modeling and in vivo studies of this phenomenon are

likely to be fruitful directions for future research.

Mathematical Appendix

The gradient of the ‘x’-nullcline in a planar nonlinear system is

equivalent to the quotient formed by dividing the top left term in

the system’s Jacobian by the top right term and multiplying the

result by 21. The gradient of the ‘y’-nullcline is equivalent to the

bottom left term divided by the bottom right term and multiplied

by 21. This can be shown by first acknowledging that in

linearizing about a fixed point we are approximating a nonlinear
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system by an equivalent linear description at that point and

secondly by considering the general form of two coupled linear

differential equations (Equation (10)):

_xx~axzby

_yy~cxzdy
ð10Þ

The Jacobian of this system is:

a b

c d

� �
ð11Þ

The nullclines are:

0~axzby

0~cxzdy
ð12Þ

The two nullcline equations in (12) can be rearranged to give two

equations of straight lines:

y~{
a

b
x

y~{
c

d
x

ð13Þ

This demonstrates the relationship between the gradients of the

nullclines and the terms in the Jacobian when we linearize about a

fixed point.
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18. Buzsáki G (2010). Neural syntax: cell assemblies, synapsembles, and readers.

Neuron 68(3): 362–85.

19. Palva S, Palva JM (2007). New vistas for alpha-frequency band oscillations.

Trends Neurosci 30(4): 150–8.

20. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CR (2008).

Entrainment of neuronal oscillations as a mechanism of attentional selection.

Science, 320(5872): 110–3.

21. VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends

Cogn Sci 7: 207–213.

22. Jensen O, Lisman JE (1996) Hippocampal CA3 region predicts memory

sequences: accounting for the phase precession of place cells. Learn Mem 3:

279–287.

23. Lisman JE, Idiart M (1995) Storage of 7+/22 short-term memories in

oscillatory subcycles. Science (802) 267: 1512–1515.
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