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Experimental data indicate that perceptual decision making involves in-
tegration of sensory evidence in certain cortical areas. Theoretical studies
have proposed that the computation in neural decision circuits approx-
imates statistically optimal decision procedures (e.g., sequential proba-
bility ratio test) that maximize the reward rate in sequential choice tasks.
However, these previous studies assumed that the sensory evidence was
represented by continuous values from gaussian distributions with the
same variance across alternatives. In this article, we make a more realistic
assumption that sensory evidence is represented in spike trains described
by the Poisson processes, which naturally satisfy the mean-variance rela-
tionship observed in sensory neurons. We show that for such a represen-
tation, the neural circuits involving cortical integrators and basal ganglia
can approximate the optimal decision procedures for two and multiple
alternative choice tasks.

1 Introduction

Making choices on the basis of sensory information is one of the critical
abilities for animals and humans. Neurophysiological studies suggest that
during perceptual decision making, the neurons in sensory areas provide
noisy evidence represented in their firing rates (Britten, Shadlen, Newsome,
& Movshon, 1993; Newsome & Paré, 1988; Shadlen & Newsome, 1998). Ex-
perimental studies further indicate that during the decision process, this
sensory evidence is accumulated over time by neural integrators in certain
cortical areas (Kim & Shadlen, 1999; Schall, 2001; Shadlen & Newsome,
2001), and the decision is made as soon as the activity of the integrator neu-
rons exceeds a certain threshold (Mazurek, Roitman, Ditterich, & Shadlen,
2003; Roitman & Shadlen, 2002; Schall, 2001, 2002).
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On the basis of these and other data, theoretical studies have proposed
that during the decision process, the brain approximates optimal statisti-
cal tests: the sequential probability ratio test (SPRT) (Barnard, 1946; Wald,
1947) during the choice between two alternatives (Bogacz et al., 2006; Gold
& Shadlen, 2001, 2002, 2007; Laming, 1968) and the multihypothesis SPRT
(MSPRT) (Baum & Veeravalli, 1994; Dragalin, Tartakovsky, & Veeravalli,
1999) during the choice between multiple alternatives (Bogacz & Gurney,
2007). These tests provide an optimal criterion for when to stop the integra-
tion of sensory information and execute an action. In this article, we refer to
decision-making models as optimal if they minimize decision time for any
level of accuracy (Dragalin et al., 1999; Wald & Wolfwitz, 1948; see section 2
for details).

All the theoretical studies mentioned above rely on two assumptions:
(1) in each moment of time, sensory evidence in support of each alternative
comes from a gaussian distribution, and (2) the distributions of the evidence
supporting all alternatives have the same variance. However, both of these
assumptions are oversimplified since sensory neurons transmit information
as discrete spikes, and the variance of neuronal firing rate is proportional
to its mean in sensory areas (Shadlen & Newsome, 1998).

This article analyzes whether the conclusions of the theoretical studies,
suggesting that the neural decision circuits approximate the SPRT or the
MSPRT, still hold when more realistic assumptions are made regarding the
representation of evidence in sensory areas. It shows that indeed, simple
integration strategies can implement the optimal statistical tests in two
and multiple alternative tasks if it is assumed that evidence is represented
by spikes of sensory neurons and the variance of neuronal firing rate is
proportional to its mean.

The article is organized as follows. Section 2 reviews the current theo-
ries proposing that the brain approximates the optimal statistical tests for
decision making. Section 3 formalizes the decision-making problem on the
basis of spiking inputs. Sections 4 and 5 describe the models of neural cir-
cuits that implement the optimal decision procedures for two and multiple
alternatives, respectively. Section 6 demonstrates that the simulations of
decision networks that approximate spiking input with a gaussian variable
with variance proportional to the mean may generate surprising spurious
results under certain conditions. Section 7 discusses the directions of future
work. Mathematical details are contained in appendixes.

2 Review of the Theory of Optimal Decision Making

2.1 Neurophysiology of Decision. In a typical motion discrimination
task used to study the neural basis of decision, an animal is presented
with a stimulus consisting of a circular display filled with moving dots
(Britten, Shadlen, Newsome, & Movshon, 1992, 1993). A certain proportion
of the dots moves coherently in one direction, while the other dots move
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randomly. The animal has to identify the direction of coherent motion of
the majority of dots and indicates its response by making a saccade in
the corresponding direction. In this article, we focus on the reaction time
version of this task (Roitman & Shadlen, 2002), in which the animal is free
to indicate its choice at any time after stimulus onset.

During this task the firing rates of motion-sensitive neurons in area MT
encode the amount of coherent motion in the neurons’ preferred direction at
a particular moment of time (Britten et al., 1993). Hence, these neurons pro-
vide evidence supporting alternative choices. On the basis of experimental
data, it has been proposed that the evidence for a particular direction of
motion is integrated over time by neurons in cortical areas (including the
lateral intraparietal area and the frontal eye field) involved in controlling
eye movement (Schall, 2001; Shadlen & Newsome, 2001), and the decision
is made as soon as the firing rate of integrator neurons corresponding to a
particular alternative exceeds a certain decision threshold (Kiani, Hanks, &
Shadlen, 2008; Roitman & Shadlen, 2002).

2.2 Decision Problem. For a decision task with N alternatives (N ≥ 2),
let us denote the firing rate of sensory neurons (e.g., in area MT) selective
for alternative i at time t by xi (t). Most of the theoretical work on decision
making assumes that xi (t) come from a gaussian distribution with mean μi

and the same standard deviation σ for all alternatives (Bogacz et al., 2006;
Bogacz & Gurney, 2007; Bogacz, Usher, Zhang, & McClelland, 2007; Gold
& Shadlen, 2001, 2002; McMillan & Holmes, 2006; Shadlen & Newsome,
1998; Usher & McClelland, 2001). The problem of decision making can be
simply posed as the identification of which μi is the highest. The closer
μi to each other and the higher σ , the more difficult the decision, and
these theoretical works for simplicity assumed that the difficulty remains
fixed between trials. The decision problem can be formulated as deciding
between N statistical hypotheses Hi , each stating that μi is the highest (see
appendix A for a precise statement of the hypotheses).

This problem is, however, nontrivial, because the firing rates of sensory
neurons are noisy and a simple strategy of choosing the alternative with the
highest xi (t) at any particular moment of time t would produce many incor-
rect choices. Hence, solving decision problems accurately requires sampling
of xi (t) for a period of time. Such sampling may involve the accumulation
of the evidence over time:

yi (t) =
t∑

s=1

xi (s), (2.1)

and choosing the alternative with the highest yi (t). Under this strategy, the
longer the integration period, the more accurate the answer.

However, this description leaves open the central question of when to
stop the integration and make a response. The simplest solution to this
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question is to make a decision as soon as any yi (t) exceeds a preassigned
threshold. This strategy is known as the race model (Vickers, 1970), but it is
not the optimal one.

2.3 Optimal Decision-Making Theory. The optimal solution of the
above decision problem for simple, two-alternative forced-choice (2AFC)
tasks (N = 2) is provided by the SPRT. Let us denote the entirety of sensory
evidence available up to time t by input(t) = {xi (s) : 1 ≤ i ≤ N, 1 ≤ s ≤ t}.
To implement the SPRT, the ratio of the conditional probabilities of input(t)
given the two hypotheses being correct is computed at each time step:

P(input(t) | H1)
P(input(t) | H2)

. (2.2)

If in a given step the ratio of equation 2.2 is above threshold α, then hy-
pothesis H1 is accepted; if it is below a lower threshold 1/α, then H2 is
accepted; otherwise the decision process continues, and the next sample of
sensory evidence is observed. It has been shown that for the assumptions
about the distributions of xi (t) given in section 2.2, the logarithm of equa-
tion 2.2 is proportional to the difference y1(t) − y2(t); hence, the SPRT can
be implemented by a simple procedure in which a decision is made as soon
as y1(t) − y2(t) exceeds a positive or a negative threshold z or −z (Gold &
Shadlen, 2001, 2002; Laming, 1968). This argument is reiterated in appendix
A. It has been demonstrated that this simple procedure (and thus the SPRT)
can be approximated in various simple neuronal architectures (Bogacz et al.,
2006; Brown et al., 2005; Mazurek et al., 2003; Shadlen & Newsome, 1998;
Usher & McClelland, 2001; Wong & Wang, 2006). Furthermore, the diffu-
sion model, which assumes that the brain employs this procedure during
decision making, has been very successful in describing patterns of reaction
times from a wide range of 2AFC tasks (Laming, 1968; Ratcliff, 1978, 1988;
Ratcliff & McKoon, 2008).

As mentioned in section 1, the SPRT is optimal in the following sense:
among all the methods of decision making giving a certain probability
of error, it minimizes the expected number of samples required (Wald &
Wolfwitz, 1948), or, in other words, for any accuracy level, it minimizes the
average decision time (DT). Hence, for example, when both the SPRT and
the race model are used to identify which of two inputs has higher mean,
and in both models decision thresholds are set to give the same accuracy,
the SPRT will give the lower average DT.

What is the ecological relevance of this optimality property? In many sit-
uations, animals aim at maximizing their total reward and need to choose
threshold z, which balances the demands of speed and accuracy. In a wide
range of tasks involving sequences of choices in which rewards can be ob-
tained for correct choices, there exists a unique threshold zo maximizing the
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rate of receiving rewards (Bogacz et al., 2006). Importantly, the optimality
property of the SPRT (i.e., minimization of DT for any accuracy) implies
that the SPRT with threshold zo maximizes the reward rate (Bogacz et al.,
2006; Bogacz, 2009). Thus, for example, the SPRT with threshold zo yields a
higher reward rate than the race model with any threshold. An algorithm
allowing rapid learning of zo has been proposed (Simen, Cohen, & Holmes,
2006), and recent experimental data suggest that a significant fraction of
human participants indeed set the threshold close to zo (Simen et al., in
press; Bogacz, Hu, Holmes, & Cohen, in press).

Let us describe how the above implementation of SPRT can account for
the observation that accuracy decreases with choice difficulty. In the gen-
eral formulation of SPRT in equation 2.2, the value of threshold α alone
determines the accuracy (Wald, 1947). However, in the SPRT implementa-
tion in which a choice is made when y1(t) − y2(t) exceeds thresholds z or
−z, the accuracy depends on both z and the difficulty of the choice. This is
because y1(t) − y2(t) is proportional to the logarithm of equation 2.2 with
a proportionality constant depending on task difficulty (see appendix A).
Thus, making a choice when y1(t) − y2(t) exceeds a fixed threshold z or −z
corresponds to making a choice when the likelihood ratio of equation 2.2
exceeds a threshold that depends on task difficulty.

Finally, it is interesting to point out that to minimize DT for any accuracy
(or to maximize the reward rate), the exact value of the likelihood ratio of
equation 2.2 does not need to be known—only a quantity (y1(t) − y2(t)) that
is proportional to it with an unknown proportionality constant (depending
on task difficulty).

For the case of N-alternative forced-choice (NAFC) tasks (N > 2), there
are two tests known as the MSPRT that are asymptotically optimal; they
minimize DT for a fixed probability of error when this probability is asymp-
totically small (Dragalin et al., 1999). Furthermore, it has been demonstrated
numerically that both MSPRTs give faster DT than simpler decision strate-
gies for larger probabilities of error (Bogacz & Gurney, 2007; McMillan and
Holmes, 2006). One of the MSPRTs computes the conditional probability
pi (t) = P(Hi | input(t)) and the choice is made as soon as any of pi (t) ex-
ceeds a threshold (Dragalin et al., 1999). From Bayes’ theorem, we have

pi (t) = P(input(t) | Hi ) P(Hi )
P(input(t))

. (2.3)

For the assumptions about the distributions of xi (t) given in section 2.2, the
logarithm of pi (t), which we denote li (t) = log pi (t), is equal to (Bogacz &
Gurney, 2007)

li (t) = gyi (t) − log
N∑

k=1

exp (gyk(t)), (2.4)
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where g is a constant depending on task difficulty (however, its value little
affects the performance; see Bogacz & Gurney, 2007). Thus, the MSPRT can
be implemented by a procedure that at each moment of time t and for each
alternative i computes li (t), and the decision is made as soon as any li (t)
exceeds a certain decision threshold.

Bogacz and Gurney (2007) have shown that if yi (t) are provided by corti-
cal integrators, then equation 2.4 may be computed in a neuronal network
with striking similarities to the anatomy of the basal ganglia. In particular,
in their model, the second term in equation 2.4 is computed by a network
involving the subthalamic nucleus and the external part of the globus pal-
lidus. This model is supported by data showing that the experimentally
observed relationships between the input and the firing rate of neurons in
these two basal nuclei closely match those required to compute the second
term in equation 2.4 (Hallworth, Wilson, & Bevan, 2003; Nambu & Llinas,
1994; Wilson, Weyrick, Terman, Hallworth, & Bevan, 2004). Hence, Bogacz
and Gurney (2007) proposed that the MSPRT may be approximated by the
cortico-basal ganglia circuit.

3 Decision Problem for Spiking Inputs in a General Task

For an NAFC task, let us assume that there exist N populations of
sensory neurons supporting N alternatives, and each population i (i =
1, 2, 3, . . . , N) consists of M (M ≥ 1) homogeneous sensory neurons with
the same mean firing rate μi . For consistency with section 2, let us denote
the total number of spikes produced by the j th ( j = 1, 2, 3, . . . , M) neuron
supporting alternative i in the time interval [0, t] by Yi, j (t).

Let us further assume that Yi, j (t) come from independent Poisson pro-
cesses with intensities λi . Recall that for a Poisson process with intensity
λi , the probability of the total number of spikes during [0, t] has Poisson
distribution with mean λi t and variance λi t, which is consistent with the
observation that the variance of the neural firing rate is proportional to its
mean. As the ideal observer of sensory neurons knows the timing of all
spikes, the problem of decision making can be simply defined as finding
which λi is the highest on the basis of the observed spikes of all sensory
neurons. The closer λi to each other, the more difficult the decision is. Fol-
lowing the previous theoretical works, we assume for simplicity that the
difficulty remains fixed between trials.

4 Optimal Choice Between Two Alternatives

For 2AFC tasks (N = 2) with spiking inputs, the decision problem is simpli-
fied to identifying which one of the two sensory populations has the higher
mean firing rate, that is, which of λ1 and λ2 is higher. Since the interspike
interval of a Poisson spike train is irregular, any decision strategy based
on a single spike would produce many incorrect choices. Alternatively, an
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integration strategy similar to that for continuous gaussian inputs may be
applied that counts the number of spikes for a period of time to obtain a
more accurate estimation of the sensory evidence.

The above strategy is employed in the Poisson counter model (Pike,
1966; Smith & Van Zandt, 2000). The model assumes that spikes from sen-
sory neurons supporting the two alternatives are counted by two separate
integrators:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y1(t) =
M∑

j=1

Y1, j (t),

Y2(t) =
M∑

j=1

Y2, j (t).

(4.1)

Here Y1(t) and Y2(t) denote the total number of spikes from the two sen-
sory populations until time t, respectively. The decision is made when one
of the integrators reaches a decision threshold. Since the Poisson counter-
model is based on accumulating evidence separately for each alternative,
it can be considered as a discrete analog of the race model (Vickers, 1970).
Hence for consistency, we will refer to the Poisson counter model as the
spiking race model. However, the spiking race model is not optimal, as it
does not implement the SPRT.

Appendix B.1 shows that for spiking inputs, the SPRT can be imple-
mented by computing the difference between the total numbers of spikes
generated by the two sensory populations. More specifically, the SPRT re-
quires computing

Y(t) = Y1(t) − Y2(t), (4.2)

where Y1(t) and Y2(t) are defined in equation 4.1. The procedure continues
until Y(t) exceeds a positive or a negative threshold ±z (z > 0), and selects
the first alternative if Y(t) exceeds z, or the second alternative if Y(t) is below
−z. The decision time (DT) is defined as the time latency to reach one of the
thresholds.

The SPRT for spiking inputs can be performed in an incremental fashion.
The decision process starts with Y(0) = 0 at t = 0. When any neuron from
the first population produces a spike, Y(t) is increased by 1. Analogously, if
any neuron from the second population produces a spike, Y(t) is decreased
by 1. Hence the SPRT for spiking inputs can be implemented by accumulat-
ing the difference of spike counts supporting the two alternatives, which is
exactly the same procedure as for the gaussian inputs. Hence if the sensory
evidence is represented by the Poisson spike trains, the optimal decision
strategy can still be approximated by the previously proposed neural net-
works (Bogacz et al., 2006; Brown et al., 2005; Mazurek et al., 2003; Shadlen
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Figure 1: Spiking SPRT model. (a). Evolutions of the decision variable and DT
distributions of the spiking SPRT model. The model was simulated with the
following parameters: λ1 = 50.75 Hz, λ2 = 41.25 Hz, M = 1, z = 9, and Y(0) = 0.
The solid curves denote correct trials, while the broken curve shows one error
trial. The two histograms illustrate the distribution of the DT from correct (top)
and error (bottom) trials from a total of 10,000 trials. (b) Mean DT of the spiking
SPRT model and the spiking race model against the corresponding accuracy.
The models were simulated with the same parameters as in panel a . Different
points on the curves correspond to different values of the decision threshold.
The decision thresholds for both models were varied from z = 1 to the maximum
value that gives 99% accuracy. Data are averaged over 10,000 trials.

& Newsome, 2001; Usher & McClelland, 2001; Wong & Wang, 2006). We
hereafter refer to the model in which Y(t) is integrated until it reaches one
of the two thresholds as the spiking SPRT model. In the rest of this section,
we investigate the performance of this model.

The time courses of the decision variable Y(t) on correct and error trials
are shown in Figure 1a. Note that Y(t) has discrete values since it represents
the difference of spike counts of the two sensory populations. For λ1 > λ2,
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the population supporting the first alternative is likely to produce more
spikes than the population supporting the second alternative in a unit of
time. Hence, Y(t) is more likely to be positive and reach the upper threshold
z, resulting in correct choices. But the irregular spike trains from the Pois-
son processes could also drive Y(t) to the lower threshold −z, resulting in
incorrect choices. The DT distributions are heavily skewed toward longer
times, as observed in experimental data (Luce, 1986; Ratcliff, 1978; Ratcliff
& Smith, 2004).

To evaluate the performance of the spiking SPRT model, Figure 1b com-
pares the mean DT of the spiking SPRT model with that of the spiking
race model for different levels of accuracy. The spiking SPRT model in-
deed achieves shorter DT than the spiking race model, as predicted by the
optimality of the SPRT (Barnard, 1946; Wald & Wolfwitz, 1948).

Appendixes B.2 and B.3 derive the analytical expressions of the accuracy
and associated DT of the spiking SPRT model with threshold z:

P(z) = 1

1 + (
λ−
λ+

)z , (4.3)

DT(z) = z
λ+M − λ−M

tanh
(

z
2

log
λ+
λ−

)
, (4.4)

where λ+ = max(λ1, λ2), and λ− = min(λ1, λ2). The accuracy of the spiking
SPRT model increases as the task becomes easier (i.e., λ−/λ+ decreases)
or as the threshold z becomes larger. Note that as z → ∞, the accuracy
of the spiking SPRT model converges to 100%, and DT goes to infinity.
Moreover, the DT of the spiking SPRT model decreases monotonically as
M increases. By contrast, the accuracy is independent of the size of the
sensory populations M. This counterintuitive result comes from the fact that
although for larger sensory populations the decision threshold would be
reached faster, the probability of reaching one particular threshold (i.e., the
probability of making a correct or incorrect decision) remains unchanged.
However, it is important to caution that this independence of accuracy from
M holds for the simplified assumption we made that the sensory neurons
are independent. For a more realistic situation of correlated firing of sensory
neurons (Zohary, Shadlen, & Newsome, 1994) the accuracy is unlikely to be
independent of M, but we were unable to find the analytic expressions for
the accuracy and DT for correlated inputs.

Figure 2 shows the accuracy and DT of the spiking SPRT model with dif-
ferent levels of sensory inputs. In order to model more biologically realistic
inputs, the mean firing rates of the two sensory populations are selected on
the basis of neural recording data during the motion discrimination task
(Figure 2 in Britten et al., 1993; and cf. section 2.1). For each motion coher-
ence level, λ1 and λ2 are set to be the mean firing rates of the selected MT
neuron when the stimulus moves toward the neuron’s preferred and null
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Figure 2: Behavioral performance of the spiking SPRT model in the motion
discrimination task. The model was simulated for 5000 trials with parameters
M = 1, z = 9, and the values of λ1 and λ2 for different motion coherence levels
estimated from the neural recording data in the study by Britten et al. (1993).
(a) Accuracy is plotted against the motion coherence. (b) Mean DT is plotted
against the motion coherence. Points with error bars show the results of simu-
lations. The error bars show the standard error of the mean. The circle points
are the theoretical predictions from equations 4.3 and 4.4.

directions, respectively. The simulation results are shown to correspond
closely to the theoretical predictions from equations 4.3 and 4.4. As the mo-
tion coherence increases from 2.0% to 51.2%, the change of the accuracy and
mean DT of the spiking SPRT model shows the same pattern as observed
in the experimental data (Roitman & Shadlen, 2002). For low coherence,
since λ1 and λ2 are similar, the spike counts supporting the two alternatives
would also be similar. As a result, Y(t) needs a relatively long time to reach
the thresholds, producing more errors and large DT. Conversely, if λ1 and
λ2 are distinct from each other (i.e., large coherence), the difference of the
spike counts supporting the two alternatives quickly reaches the thresholds,
resulting in more accurate choices and small DT.

5 Optimal Choice Between Multiple Alternatives

5.1 Optimal Decision Procedure for a General Task. In this section we
consider an NAFC task (N > 2) and assume that the population supporting
the correct alternative has mean firing rate λ+, while all other populations
supporting the N − 1 incorrect alternatives have the same mean firing rate
λ−, where λ+ > λ−. An analogous assumption has been made in previous
models of NAFC task with gaussian inputs (Bogacz & Gurney, 2007; Bogacz
et al., 2007; McMillan & Holmes, 2006). For consistency, we hereafter set
λ1 = λ+ (i.e., λi = λ− for i �= 1) and assume the first alternative is the correct
choice.
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Recall that for NAFC tasks, an asymptotically optimal decision proce-
dure is provided by the MSPRT. In appendix C.1 we show that for the above
assumption about λi , the MSPRT can be implemented by the same proce-
dure as for gaussian inputs. Specifically, the MSPRT requires N neural inte-
grators that count the total number of spikes from neurons supporting each
alternative. Let us denote the activity of the integrator i at time t by Yi (t),

Yi (t) =
M∑

j=1

Yi, j (t), (5.1)

where Yi, j (t) has the same definition as in equation 4.1. Then the MSPRT
requires computing

Li (t) = gYi (t) − log
N∑

k=1

exp (gYk(t)), (5.2)

and the decision should be made as soon as any Li (t) exceeds a decision
threshold z. Here the gain parameter g is a constant scaling factor. To
faithfully implement the MSPRT, the gain needs to be set to the following
optimal value:

g = g∗ = log
(

λ+
λ−

)
. (5.3)

Note that equation 5.2 describes the same function of the activity of cortical
integrators as equation 2.4 that has been proposed to be approximated in
the basal ganglia (Bogacz & Gurney, 2007). Therefore, the MSPRT can also
be implemented in the model of the cortico-basal ganglia circuit (Bogacz
& Gurney, 2007) when the sensory evidence is carried by discrete spikes.
We hereafter refer to the model described by equations 5.1 and 5.2 as
the spiking MSPRT model. In the rest of this section we investigate the
performance of this model and the effect of the gain parameter.

Figure 3a compares the DT of the spiking race model, the leaky compet-
ing accumulator (LCA) model proposed by Usher and McClelland (2001),
and the spiking MSPRT model, for a fixed accuracy. As the number of al-
ternatives increases, all the models produce longer DT. For N = 2, the LCA
model and the spiking MSPRT model achieve similar DT. This was not un-
expected because for gaussian inputs, both the LCA model and the MSPRT
model can be reduced to the SPRT for N = 2 (Bogacz et al., 2006). Hence,
the simulation result supports that this relationship still holds when sen-
sory evidence is represented by spike trains. For N > 2, the spiking MSPRT
model achieves the shortest DT among all the models.

The spiking MSPRT model includes the ratio λ+/λ− in the gain param-
eter g, which suggests that it requires the task difficulty (expressed by
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Figure 3: Mean DT of decision-making models with spiking inputs in the gen-
eral NAFC task. (a) Mean DT of the spiking race model, the LCA model, and
the spiking MSPRT model for different numbers of alternatives. For all the
models, the mean firing rates of the N sensory populations are λ1 = 50.75 Hz,
λ2 = · · · = λN = 41.25 Hz (values estimated from Britten et al., 1993), and the
population size M = 3. The spiking MSPRT model was simulated with the opti-
mal gain g∗ = 0.21. The LCA model was simulated with inhibition and decay set
to 10. For each value of N, the thresholds of the models were found numerically
that gave 90% ± 0.2% accuracy. The search for the threshold was repeated 20
times, and the DT from the 20 iterations was averaged to construct the data
points. The standard error bars are smaller than the data points. (b) Effect of the
value of the gain parameter of the spiking MSPRT model. The spiking MSPRT
model was simulated with the following parameters: N = 10, λ1 = 56.49 Hz,
and λ2 = · · · = λN = 37.50 Hz (values estimated from Britten et al., 1993). The
mean DT is plotted against the ratio of the gain value g and the optimal gain g∗

with M = 1. The dashed line shows the mean DT produced by the LCA model
with the same inputs and inhibition and decay set to 10.

parameters λ+ and λ−) to be known a priori. There are, however, two so-
lutions to this problem. First, Bogacz and Gurney (2007) have shown that
for gaussian inputs, to minimize DT, the gain parameter g has to be set
to either the optimal value g = g∗ or to a higher value. When g has lower
values (g < g∗), the performance of their model decreases to that of the
LCA model. Figure 3b shows that the spiking MSPRT model follows the
same pattern. If g > g∗, the model achieves similar DT. If g < g∗, the DT
increases as g decreases. For relatively small g (g/g∗ < 0.02 in Figure 3b),
the DT of the spiking MSPRT model converges to the DT of the LCA model
with the same level of inputs. Hence, if g is set above the value determined
by λ+ and λ−, the performance of the model does not deteriorate. Thus, the
optimal performance may achieved by setting g sufficiently high, even if
the precise value of λ+ and λ− is not known.

The second alternative solution is to follow a very interesting approach
proposed recently by Beck et al. (2008): a model of decision making that does
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not require the knowledge of task difficulty. They achieved it by making
very clever assumptions about information coding by sensory neurons. In
appendix D we show that the assumption of Beck et al. corresponds in the
spiking MSPRT model to assuming that the ratio λ+/λ− is always fixed for
all levels of difficulty (this would imply that on difficult trials, both λ+ and
λ− are lower than on easy trials, but their ratio always remains constant). If
the ratio λ+/λ− is always constant, it is reasonable to assume that its value
can be well estimated by the neural decision circuit. In the spiking MSPRT
model, only the ratio λ+/λ− (rather than λ+ and λ− individually) influences
the gain parameter g (see equation 5.3). Hence if we follow the approach of
Beck et al. and assume that the ratio λ+/λ− is known, then the parameter
g can always be set appropriately (no matter what the individual values of
λ+ and λ− are).

5.2 Optimal Decision Procedure for Spiking Inputs from a Tuning
Curve. The previous section assumed that neurons supporting all the in-
correct alternatives have the same firing rate. However, in many situations,
sensory neurons have different firing rates for different stimuli. For exam-
ple, in the motion discrimination task described in section 2, the MT neurons
selective for rightward motion would have the highest firing rates when a
stimulus with coherent rightward motion is presented, but would also have
increased activity for stimuli with motion in similar directions, for example,
toward the upper-right corner of the screen (Britten et al., 1993; Dubner &
Zeki, 1971; Maunsell & Van Essen, 1983a, 1983b; Zeki, 1980). More specif-
ically, the mean firing rate of sensory neurons varies as a function of the
stimulus, and this function is called the tuning curve. Figure 4a illustrates
the tuning curve of one sensory neuron selective for rightward motion. The
neuron has the maximum firing rate λ+ when the coherent motion direc-
tion is the neuron’s preferred direction (equal to 0 degrees for this neuron);
otherwise, the firing rates vary depending on the difference between its
preferred direction and the stimulus direction.

This section extends the analysis of section 5.1 to a more realistic scenario
in which the mean firing rates of sensory neurons come from a tuning curve.
Let us consider a multiple alternative version of the motion discrimination
task in which the dots may move in one of N directions equally distributed
around 360 degrees (e.g., Churchland, Kiani, & Shadlen, 2008) and denote
the direction of the coherent motion by θ0 (indicating the correct alternative).
For a sensory neuron in area MT with preferred direction θ , its tuning curve
can be approximately described by a gaussian function (Snowden, Treue,
& Andersen, 1992):

λθ (θ0) = �(θ, θ0) = λ− + (λ+ − λ−) exp
(

−d2(θ, θ0)
2σ 2

)
, (5.4)
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Figure 4: The tuned MSPRT model. (a) Tuning curve describing the mean firing
rates of one sensory neuron as a function of the coherent motion direction. The
tuning curves were generated from equation 5.4 with parameters: λ+ = 68 Hz,
λ− = 30 Hz (values estimated from Britten et al., 1993), σ = 46.5◦, (with values
estimated from Snowden, Treue, & Andersen, 1992). The thick line marked
with λθ (0) denotes the firing rate of the neurons when coherent direction is
its preferred direction θ0 = 0◦. (b) Mean DT of the spiking race model, the
LCA model, and the tuned MSPRT model is plotted against the number of
alternatives. All three models are subjected to the same spiking inputs from
tuning curves shown in a , and M = 2. The LCA model was simulated with
inhibition and decay set to 10. The mean DT for 90% ± 0.2% accuracy was
obtained by the same method applied in Figure 3a. The standard error bars are
smaller than the data points.

where λθ (θ0) is the mean firing rate of the neuron specified by the tuning
function �(θ, θ0). λ+ and λ− denote the firing rates of the neuron when
the coherent direction is the neuron’s preferred or null direction, and σ



Optimal Decision Making Based on Spike Trains 1127

describes the width of the tuning curve. d(θ, θ0) denotes the distance be-
tween θ and θ0 and is defined as

{
d(θ, θ0) = |θ − θ0|, if |θ − θ0| ≤ 180◦,

d(θ, θ0) = 360◦ − |θ − θ0|, if |θ − θ0| > 180◦.
(5.5)

The preferred direction of the neurons supporting alternative i is θi =
360◦(i − 1)/N, and hence their mean firing rate for stimulus θ0 is

λθi (θ0) = �(360◦(i − 1)/N, θ0), where 1 ≤ i ≤ N. (5.6)

For the NAFC task described above, appendix C.2 shows that the MSPRT
can be implemented by computing

Li (t) = Ŷi (t) − log
N∑

j=1

exp (Ŷj (t)), where (5.7)

Ŷi (t) =
N∑

k=1

log (λθk (θi )) Yk(t). (5.8)

Here Yk(t) is the total number of spikes from the kth population up to time
t, which is given by equation 5.1. To implement the MSPRT, alternative i
should be selected as soon as any Li (t) exceeds a decision threshold.

When the spike trains are generated from tuning curves, the neural
integrator selective for alternative i needs to compute equation 5.8, which
involves the sum of the spike counts from all the N sensory populations and
is weighted by the logarithm of their firing rate if alternative i were correct.
Such a computation can be performed if the neural integrators selective
for a particular direction receive the strongest input from sensory neurons
selective for this direction, and also smaller inputs from sensory neurons
preferring similar directions. Exactly the same weighting as in equation
5.8 was proposed by Jazayeri and Movshon (2006), who showed that it also
allows optimal representation of sensory information by neural integrators.
Note that equation 5.7 describes the same function of the activity of cortical
integrators as equation 2.4 that has been proposed to be evaluated in the
basal ganglia (Bogacz & Gurney, 2007). Hence a network involving cortical
integrators connected with sensory neurons as described above and the
model of the basal ganglia (Bogacz & Gurney, 2007) can implement the
MSPRT when the spiking inputs are generated from tuning curves. We refer
to the model described by equations 5.7 and 5.8 as the tuned MSPRT model.

To illustrate the optimality of the tuned MSPRT model, Figure 4b com-
pares DT (for a fixed accuracy) of the tuned MSPRT model and simpler
strategies in which the integrators accumulate the input from only one



1128 J. Zhang and R. Bogacz

corresponding population of sensory neurons: the spiking race model and
the LCA model. The spiking inputs of all the models are generated from the
tuning curve defined in equation 5.4. All three models produce longer DT
as N increases, as in Figure 3a. However, Figure 4b shows that for inputs
generated from the tuning curve, the spiking race and the LCA models
produce much longer DT for N ≥ 8. This is due to the fact that for large
N, the difference between the populations’ preferred directions θi are small
(as the N directions are equally distributed around 360 degrees) so that the
firing rates of the adjacent populations are similar, which makes it more
difficult to discriminate the population with the highest mean firing rate
(i.e., the correct alternative) and results in long DT. Importantly, for large
N, the tuned MSPRT model achieves DTs several times shorter than those
of the simpler models.

In the tuned MSPRT model, λ+ and λ− define the range of firing rates of
the MT neurons for a given task difficulty. For example, in a difficult task,
λ+ and λ− will be close to each other, and according to equation 5.4, the MT
neurons will have similar firing rates for different directions of motion. The
weights of connections between MT and integrator neurons in equation 5.8
depend on λ+ and λ− via equations 5.4 and 5.6, which suggests that the
model requires the task difficulty to be known a priori. However, as for the
spiking MSPRT model, following the method of Beck et al. (2008), appendix
D shows that the task difficulty does not need to be known in the tuned
MSPRT model when the ratio λ+/λ− is assumed to be constant.

6 Can We Approximate Sensory Input by Gaussian Distribution?

Many experimental studies have reported that the variance in firing rate
of sensory neurons is proportional to its mean (Britten et al., 1993; Shadlen
& Newsome, 1998; Tolhurst, Movshon, & Dean, 1983). Consequently, sev-
eral previous studies have used gaussian inputs with a similar variance-
mean relationship in simulations of decision processes (Bogacz et al., 2007;
Diederich & Busemeyer, 2006; Niwa & Ditterich, 2008), but we show that
such types of inputs may lead to spurious conclusions from the simulations.

Appendix A shows that for gaussian inputs with variance proportional
to the mean, the SPRT cannot be implemented by linear integration of
evidence. Instead the SPRT is implemented for such inputs by a procedure
in which the difference of squares of sensory evidence is integrated until it
exceeds a positive or a negative threshold. This procedure is unusual from
a biological computation point of view and has not yet been supported by
either physiological or behavioral data.

To illustrate the problems that may occur in the simulations using gaus-
sian inputs with variance proportional to the mean, we simulate two deci-
sion procedures for 2AFC tasks with such inputs: one involving the integra-
tion of the difference between inputs and a second involving the integration
of the difference between the squares of inputs. In the simulation, the inputs
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Figure 5: The mean DT of decision procedures with gaussian inputs with vari-
ance proportional to the mean. The models were simulated with parameter
μ1 = 55 Hz, μ2 = 37 Hz, and the time step δ varies from 0.0001 s to 0.5 s. The
thresholds of the models were found numerically that gives 90% ± 0.2% accu-
racy.

were accumulated in integrators in time steps of δ. Hence, at every time step,
the evidence supporting the first alternative was generated from a gaussian
distribution with mean and variance μ1δ, while the evidence supporting the
second alternative was generated from a gaussian distribution with mean
and variance μ2δ.

Figure 5 illustrates the mean DT at a certain accuracy for the two proce-
dures with different δ. For δ above 0.2 s, both procedures perform equally,
but note that this value of δ is close to DT, so on the majority of simulated
trials, the threshold is reached after a single integration step. When the de-
cision is made on the basis of a single sample from each sensory input, the
squaring of the sensory inputs does not change the outcome of decision, and
therefore the two procedures perform equally. By contrast, for smaller δ, the
integration of squares is superior. Furthermore, as δ decreases, DT of the
procedure involving the integration of squares converges to 0, which is not
biologically realistic because it implies that a decision with a high accuracy
may be made after an arbitrary short time on the basis of noisy inputs.

Let us provide an intuition for this surprising numerical phenomenon.
When the variance is proportional to the mean, each sample carries a sig-
nificant amount of information even if δ decreases to 0. For example, if
the evidence supporting the first alternative is particularly high or low in
a given step, it indicates that the first alternative has higher variance, and
hence is the correct one. This information is extracted by the procedure inte-
grating squares. Since DT is equal to the product of the number of samples
and δ and each sample carries significant information, the DT required to
gain a desired accuracy decreases to 0 as δ decreases to 0.



1130 J. Zhang and R. Bogacz

If one simulates a nonlinear decision network sharing properties with the
model integrating squares of inputs (e.g., in which at each step, the inputs
with the higher values have larger influence over the final choice), then one
may underestimate DT (for fixed accuracy) if one uses the gaussian inputs
with variance proportional to the mean.1

For spiking inputs or for gaussian inputs with constant variance across
alternatives, DT (for fixed accuracy) little depends on δ. Paradoxically, for
the gaussian inputs with variance proportional to the mean, which seem
to be closer to biology than gaussian inputs with constant variance, the
DT may strongly depend on δ, which may produce unrealistic results of
simulations.

For Poisson spike trains, the implementation of SPRT is to integrate the
difference between the spike counts. On the other hand, for gaussian inputs
with variance proportional to the mean, the implementation of SPRT would
be to integrate the differences between the squares of sensory evidence.
How can the two distinct procedures both be optimal, given the fact that
a Poisson distribution can be approximated by a gaussian distribution for
sufficiently large values of the mean? To investigate this question, Figure 6
shows histograms of three types of sensory evidence from one time step
δ = 0.01 s: the difference of two Poisson spike counts, the difference of two
gaussian inputs, and the difference of the squares of two gaussian inputs.
For large population size (M = 100 in Figure 6), the distribution of Poisson
inputs approaches a gaussian distribution as expected. In addition, for large
M, the difference of the squares of gaussian inputs has a similar (but scaled)
distribution to the difference of the gaussian inputs. Therefore, the two
SPRT procedures for the gaussian inputs and the Poisson inputs converge
for large M.

7 Conclusion

7.1 Summary. This study has considered the decision problem under
an assumption that the sensory evidence is represented by discrete Poisson
spike trains. We have shown that for two alternatives, the SPRT can be
implemented by a simple integration strategy as for gaussian inputs. For
multiple alternatives, we have shown that the MSPRT can also be imple-
mented by the same network involving cortical integrators and the basal
ganglia model, as for gaussian inputs. Finally, if the firing rates of sensory
neurons come from tuning curves, we have shown that each neural integra-
tor in the cortex needs to receive the sum of the spike trains from all sensory
neurons, weighted by the similarity between the preferred directions of the
integrator and given sensory populations.

1Indeed, in our earlier study (Bogacz et al., 2007) we made such a simulation, but
recently we repeated it for spiking inputs (Bogacz, Usher, Zhang, & McClelland, in press)
and obtained a qualitatively different pattern of results.
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Figure 6: The histograms of (a) the difference of Poisson inputs, (b) the dif-
ference of gaussian inputs, and (c) the difference of the squares of gaussian
inputs. The models were simulated with the time step δ = 0.01 s and M = 100.
The means of the two alternatives are 55 Hz and 45 Hz, and the variances of
the two alternatives are equal to the means. For each model, the histogram was
obtained from 1 million trials.

7.2 Variability of Difficulty Between Trials. As mentioned in
section 2.2, all previous work on neural implementations of the SPRT and
the MSPRT for simplicity assumed that the task difficulty remains constant
between trials, and the same simplifying assumption is made throughout
this article. In many experimental studies of decision making, the choice
difficulty was indeed constant between trials (e.g., Forstmann et al., 2008;
Simen et al., in press; Bogacz, Hu et al., in press). However, in many other
experimental paradigms, the choice difficulty varied between trials (e.g.,
Roitman & Shadlen, 2002).

It is interesting to point out that although we showed in sections 5.1
and 5.2 that the task difficulty does not need to be known for the mod-
els described in this article to work, the models do not implement the
SPRT or the MSPRT for tasks with difficulty varying across trials. This
is because the statistical hypotheses about the probability distributions of
sensory inputs in each of the models (see equations B.1 and C.1) assume
that λ+ and λ− are constant. To derive the procedures maximizing the re-
ward rate for tasks with difficulty varying across trials, one would have to
define more general hypotheses. This can be one of the directions of future
work.



1132 J. Zhang and R. Bogacz

7.3 Future Work. One extension of this study is to consider more real-
istic spike train statistics. In this article, we assumed that the spike trains
of sensory neurons are generated from the Poisson processes, in which the
mean spike count is equal to its variance. However, data from in vivo ex-
periments suggested that the variance-mean ratio of the spike trains from
cortical neurons is slightly larger than 1 (1–1.5) (Shadlen & Newsome, 1998).
This larger variance relative to the mean may arise from synaptic back-
ground activity from other cortical areas (Softky & Koch, 1993; Wolfart,
Debay, Le Masson, Destexhe, & Bal, 2005), or it may also be caused by the
intrinsic irregularity of neurons. One may consider a more general class
of stochastic processes (e.g., the renewal processes), whose variance-mean
ratio is a constant (Smith, 1959). Another extension would be to consider
the correlation between firing rate of sensory neurons (Zohary et al., 1994).

Appendix A: SPRT for Gaussian Inputs

This appendix derives the procedures implementing the SPRT for the as-
sumption that the evidence xi (t) supporting alternative i comes from gaus-
sian distribution with mean μi and standard deviation σi , which we denote
xi (t) ∼ N (μi , σi ). Initially we loosen the assumptions of section 2.2, as we
do not assume that σ1 = σ2. After deriving the procedure for these gener-
alized assumptions, we will consider two cases: (1) σ1 = σ2, that is, both
integrators receive equally noisy evidence, as in section 2.2 and (2) σ 2

i ∼ μi ,
the variance in firing rate of sensory neurons is proportional to its mean, as
reported by Shadlen and Newsome (1998).

Let us denote the mean and the standard deviation of the evidence
supporting the correct alternative by μ+ and σ+, and by μ− and σ− for the
incorrect alternative. As mentioned in section 2.3, the process of decision
making can be defined as distinguishing between two hypotheses H1 and
H2, corresponding to the first and second alternatives being correct:

H1 : x1(t) ∼ N (μ+, σ+), x2(t) ∼ N (μ−, σ−), (A.1)

H2 : x1(t) ∼ N (μ−, σ−), x2(t) ∼ N (μ+, σ+). (A.2)

We now derive the SPRT (see equation 2.2) for the hypotheses defined
above. By taking the logarithm of equation 2.2, we infer that the sampling
should continue as long as the difference between the logs of the conditional
probabilities remains between the (new) decision thresholds:

−logα < log P(input(t) | H1) − log P(input(t) | H2) < log α. (A.3)
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Let us calculate the log of the conditional probability of input(t) given that
the first alternative is correct:

log P(input(t) | H1) = log

(
t∏

s=1

p(x1(s) | H1) p(x2(s) | H1)

)

=
t∑

s=1

(log fμ+, σ+ (x1(s)) + log fμ−, σ− (x2(s))). (A.4)

In the above equation, fμ,σ denotes gaussian probability density function
with mean μ and standard deviation σ , hence:

log P(input(t) | H1) =
t∑

s=1

(
log

1√
2πσ+

− (x1(s) − μ+)2

2σ 2+

+ log
1√

2πσ−
− (x2(s) − μ−)2

2σ 2−

)
. (A.5)

Analogously:

log P(input(t) | H2) =
t∑

s=1

(
log

1√
2πσ−

− (x1(s) − μ−)2

2σ 2−

+ log
1√

2πσ+
− (x2(s) − μ+)2

2σ 2+

)
. (A.6)

The difference of the logs of the probabilities becomes

log P(input(t) | H1) − log P(input(t) | H2)

=
t∑

s=1

(
− (x1(s) − μ+)2

2σ 2+
− (x2(s) − μ−)2

2σ 2−

+ (x1(s) − μ−)2

2σ 2−
+ (x2(s) − μ+)2

2σ 2+

)

= 1
2σ 2+σ 2−

t∑
s=1

[
(x2

1 (s) − x2
2 (s))(σ 2

+ − σ 2
−)

+ (x1(s) − x2(s))(2μ+σ 2
− − 2μ−σ 2

+)
]
. (A.7)

Let us now consider the two sets of assumptions stated in the beginning
of the appendix. When we assume (1) that both integrators receive equally
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noisy evidence, σ+ = σ− = σ , then the first term in the square bracket in the
last line of the above equation cancels and it simplifies to:

log P(input(t) | H1) − log P(input(t) | H2)

= μ+ − μ−
σ 2

t∑
s=1

(x1(s) − x2(s))

= μ+ − μ−
σ 2 (y1(t) − y2(t)). (A.8)

Thus, for assumption 1, the SPRT is implemented by a simple procedure of
integrating the difference of sensory evidence until it exceeds a positive or
negative threshold (Gold & Shadlen, 2001, 2002; Laming, 1968).

Surprisingly, when we assume (2) that the variance in firing rate of
sensory neurons is proportional to its mean, σ 2

i ∼ μi , then the second term
in the square brackets in the last line of equation A.7 cancels, and it simplifies
to

log P(input(t) | H1) − log P(input(t) | H2)

= σ 2
+ − σ 2

−
2σ 2+σ 2−

t∑
s=1

(
x2

1 (s) − x2
2 (s)

)
. (A.9)

Thus for assumption 2, the SPRT is implemented by the procedure in which
the difference of squares of sensory evidence is integrated until it exceeds a
positive or negative threshold.

Appendix B: The Spiking SPRT Model

This appendix describes the optimal decision procedure for 2AFC tasks
when the sensory evidence is carried by the Poisson spike trains.
Appendix B.1 derives the procedures implementing the SPRT. Appendixes
B.2 and B.3 calculate the accuracy and mean DT of the spiking SPRT model.
The calculation in appendixes B.2 and B.3 is analogous to the derivation for
gaussian inputs by Shadlen, Hanks, Churchland, Kiani, and Yang (2006).

B.1 The SPRT for Spiking Inputs. For a 2AFC task described in section
3.1, let us assume that the spike trains of the neurons supporting the two
alternatives are generated from independent Poisson processes Y1, j (t) and
Y2, j (t), with intensities λ1 > 0 and λ2 > 0, respectively. Let two random
variables Y1(t) and Y2(t) be the total number of incoming spikes from the
M neurons in the two populations up to time t. According to the property
of the Poisson process, they follow the Poisson distribution with associated
parameters λ1 Mt and λ2 Mt.
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Let us first denote the higher of the two mean firing rates of sensory
neurons by λ+ = max(λ1, λ2), and denote the firing rate of the neurons
in the other population by λ− = min(λ1, λ2), and hence λ+ > λ− > 0. The
decision problem can be defined as distinguishing between two hypotheses
H1 and H2:

H1 : λ1 = λ+, and λ2 = λ−,

H2 : λ1 = λ−, and λ2 = λ+. (B.1)

Denote the entirety of sensory evidence available up to time t by input(t) =
{Y1(t), Y2(t)}. Follow the same calculation as in appendix A, the conditional
probability of input(t) given the H1 being correct is given by (cf. equation
A.4):

log p(input(t) | H1) = log (p(Y1 | H1) p(Y2 | H1))

= log fλ+ Mt(Y1) + log fλ− Mt(Y2), (B.2)

where fλ denotes the Poisson probability density function with mean and
variance λ:

fλ(Y) = λYe−λ

Y!
. (B.3)

Substituting equation B.3 in B.2, we obtain:

log p(input(t) | H1) = log
(λ+Mt)Y1 e−λ+ Mt

Y1!
+ log

(λ−Mt)Y2 e−λ− Mt

Y2!

= log(λ+Mt) Y1 + log(λ−Mt) Y2 + C, (B.4)

where C is a constant independent to the hypothesis. Analogously:

log p(input(t) | H2) = log(λ−Mt) Y1 + log(λ+Mt) Y2 + C. (B.5)

Hence the difference of the logs of the probabilities becomes as

log p(input(t) | H1) − log p(input(t) | H2) = log
(

λ+
λ−

)
(Y1(t) − Y2(t)).

(B.6)

Note that the first term of the right side of equation B.6 does not depend
on the hypothesis. The log ratio and the threshold in equation A.3 can be
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transformed to

Y(t) = log
p(input(t) | H1)
p(input(t) | H2)

/
log

(
λ+
λ−

)
= Y1(t) − Y2(t)

with z = log α

log( λ+
λ−

)
. (B.7)

Hence the SPRT with spiking inputs can be implemented as

⎧⎪⎨
⎪⎩

if Y(t) ≥ z, accept H1,

if Y(t) ≤ −z, accept H2,

otherwise, continue sampling.

(B.8)

B.2 The Probability of a Correct Decision. We divide the decision time
into discrete intervals with tiny length δ > 0. Let Xk

1 and Xk
2 be the total num-

ber of incoming spikes from the M neurons in the two populations during
the interval [(k − 1)δ, kδ]. Xk

1 and Xk
2 follow the Poisson distributions with

associated parameters λ1 Mδ and λ2 Mδ. Let us denote the difference be-
tween Xk

1 and Xk
2 by Xk (Xk = Xk

1 − Xk
2), and denote the difference between

the total spike counts between the two sensory populations during [0, kδ]
by Yk . Note that Yk is a discrete version of the decision variable of the SPRT
procedure (see equation B.8) and can be calculated by taking the sum of Xk

at each time interval.
To calculate the accuracy of the spiking SPRT model, it is necessary to

obtain the moment generating function (MGF) of Xk . The MGF of a random
variable υ is defined by (Kenney & Keeping, 1951):

Mυ (θ ) = E[eθυ], (B.9)

where E denotes the expectation and θ is the argument of the MGF M(θ ). For
Xk

1 and Xk
2 which follow the Poisson distribution, we have (Papoulis, 1986):

MXk
1
(θ ) = E

[
eθ Xk

1
] = e (eθ −1)λ1 Mδ, (B.10)

MXk
2
(θ ) = E

[
eθ Xk

2
] = e (eθ −1)λ2 Mδ. (B.11)

Since Xk is a sequence of independent and identically distributed random
variables, we can drop the superscript, and the MGF of Xk is

MX(θ ) = MXk
1
(θ ) MXk

2
(−θ )

= exp
[
(−1 + eθ )λ1 Mδ + (−1 + e−θ )λ2 Mδ

]
. (B.12)
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We assume after n time steps the decision variable {Yk} exactly hits one of
the thresholds ±z (i.e., no overshoot), and denote the terminal state by Yn.
We also assume {Yk} hits z with probability P1 (i.e., the hypothesis H1 is
selected), while {Yk} hits −z with probability P2 = 1 − P1. Since Yn can be
equal to only one of the two threshold values, the mean of Yn is

E[Yn] = P1z + (1 − P1)(−z). (B.13)

Yn also has its MGF:

MYn (θ ) = E
[
eθYn] = P1eθz + (1 − P1)e−θz. (B.14)

For a sequential procedure that computes the decision variable {Yk} by
taking the sum of the random variables Xk (i.e., the SPRT), it must satisfy
Wald’s fundamental identity (Wald, 1947):

E
[

eθYn

(MX(θ ))n

]
= 1. (B.15)

Equation B.15 must be satisfied for all values of θ . We seek θ that satisfies
MX(θ ) = 1 (because for this value E[eθYn

] = 1, and hence we will be able to
solve equation B.14 for P1). Hence from equation B.12, we need to solve

(−1 + e−θ )λ2 Mδ + (−1 + eθ )λ1 Mδ = 0, (B.16)

and the solutions are

θ0 = 0, and θ1 = log
λ2

λ1
. (B.17)

As there exists θ = θ1 that makes MX(θ ) = 1, substitute θ1 from equation
B.17 in B.15, and we have:

E
[

eθ1Yn

(MX(θ1))n

]
= E[eθ1Yn

] = 1. (B.18)

Relating equations B.14 and B.18, we have a function of P1:

P1eθ1z + (1 − P1)e−θ1z = 1. (B.19)

Solving equation B.19, we obtain the solution for P1:

P1 = 1

1 + (
λ2
λ1

)z . (B.20)
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Recall the initial hypothesis: if λ1 > λ2, then λ1 = λ+, λ2 = λ−, and the
probability of making a correct decision (i.e., select H1) is

Prcorrect = P1 = 1

1 + (
λ−
λ+

)z . (B.21)

Similarly, if λ1 < λ2, then the correct alternative is H2, and λ1 = λ−, λ2 = λ+.
The probability of making a correct decision is

Prcorrect = P2 = 1 − P1 = 1 − 1

1 + (
λ+
λ−

)z = 1

1 + (
λ−
λ+

)z . (B.22)

Therefore the accuracy of the spiking SPRT model is independent of which
alternative is actually correct and is given by equation B.21.

B.3 The Expected Decision Time. The mean of DT is proportional to
the expectation of the number of samples n when {Yk} reaches the terminal
state Yn = ±z. To calculate E[n], we again start from Wald’s identity:

E

[
eθYk

(MX(θ ))k

]
= 1. (B.23)

We first differentiate equation B.23 with respect to θ , and obtain

E

[(
eθYk

(MX(θ ))k

)′]
= E

[
(eθYk

)′

(MX(θ ))k
− eθYk

(MX(θ ))2k
((MX(θ ))k)′

]

= E

[
YkeθYk

(MX(θ ))k
− keθYk

(MX(θ ))k+1 M′
X(θ )

]
= 0. (B.24)

Let θ = θ0 = 0; then MX(θ ) = 1 and M′
X(θ ) = E[X] = λ1 Mδ − λ2 Mδ. Substi-

tuting them in equation B.24, we have

E[Yk − k(λ1 Mδ − λ2 Mδ)] = 0, (B.25)

and hence:

E[k] = E[Yk]
λ1 Mδ − λ2 Mδ

. (B.26)
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When the decision process terminates at step n, Yk = Yn. Substituting equa-
tion B.13 into B.26, we have

E[n] = P1z + (1 − P1)(−z)
λ1 Mδ − λ2 Mδ

. (B.27)

Then substituting the expression for P1 from equation B.20 in B.27, we have

E[n] = tanh
(

z
2

log
λ1

λ2

)
z

λ1 Mδ − λ2 Mδ
. (B.28)

If λ1 > λ2, H1 is true and λ1 = λ+, λ2 = λ−. The mean DT is

E[n] = tanh
(

z
2

log
λ+
λ−

)
z

λ+Mδ − λ−Mδ
. (B.29)

Similarly, if λ1 < λ2, λ1 = λ−, and λ2 = λ+, then

E[n] = tanh
(

z
2

log
λ−
λ+

)
z

λ−Mδ − λ+Mδ

= tanh
(

z
2

log
λ+
λ−

)
z

λ+Mδ − λ−Mδ
. (B.30)

Hence the mean number of observation n is given by equation B.29, regard-
less of which alternative is actually correct, and the mean DT is

DT = E[n]δ = tanh
(

z
2

log
λ+
λ−

)
z

λ+M − λ−M
. (B.31)

Appendix C: The Spiking and Tuned MSPRT Models

This appendix derives the asymptotically optimal decision procedures (the
MSPRT) for NAFC tasks when the sensory evidence is carried by the Pois-
son spike trains. Appendix C.1 considers a general case that the populations
supporting all incorrect alternatives have the same mean firing rates. In
appendix C.2 we assume that the mean firing rates of sensory popula-
tions are generated from tuning curves. The calculation is analogous to the
derivation of the MSPRT for gaussian inputs by Bogacz and Gurney (2007).

C.1 The MSPRT for Spiking Inputs. For the general NAFC task de-
scribed in section 5.1, the decision task is to identify which sensory popu-
lation has the higher mean firing rate λ+ (i.e., the true alternative), given
that all other populations have the same mean firing rate λ− (λ+ > λ−).
The process of decision making can be defined as distinguishing between
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N hypotheses Hi (1 ≤ i ≤ N) corresponding to the ith alternative being
correct:

Hi : λi = λ+, and λl = λ−, where 1 ≤ l ≤ N and l �= i. (C.1)

The asymptotically optimal decision procedure for such a decision task is
given by the MSPRT (Dragalin et al., 1999). The MSPRT is to compute the
conditional probability pi (t) = P(Hi | input(t)) and selects the alternative i
as soon as pi (t) exceeds a decision threshold (Dragalin et al., 1999, and cf.
Bogacz & Gurney, 2007), as described in equation 2.3. If there is no prior
knowledge about the decision task, all hypotheses have the same prior
probability P(Hi ) = 1/N. Then equation 2.3 can be simplified to (Bogacz &
Gurney, 2007)

pi (t) = P(input(t) | Hi )∑N
q=1 P(input(t) | Hq )

, (C.2)

and the logarithm of pi (t) is

log pi (t) = log(P(input(t) | Hi ))

− log

⎛
⎝ N∑

q=1

exp(log(P(input(t) | Hq )))

⎞
⎠ . (C.3)

The conditional probability of input(t) given Hi being correct is given by

log P(input(t) | Hi ) = log

(
N∏

l=1

P(Yl | Hi )

)

= log fλ+ Mt(Yi ) +
N∑

l=1,l �=i

log fλ− Mt(Yl ), (C.4)

where fλ denotes the Poisson probability density function with mean and
variance λ, given in equation B.3. Substituting equation B.3 in C.4, we obtain

log P(input(t) | Hi ) = log
(λ+Mt)Yi e−λ+ Mt

Yi !
+

N∑
l=1,l �=i

log
(λ−Mt)Yl e−λ− Mt

Yl !

= log
(

λ+
λ−

)
Yi − (λ+ + (N − 1)λ−)Mt

+
N∑

l=1

(
log(λ−Mt) Yl − log(Yl !)

)
. (C.5)
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The last two terms on the right-hand side of equation C.5 do not depend on
i , and hence denoting their sum by C , we have

log P(input(t) | Hi ) = g∗ Yi (t) + C, (C.6)

where

g∗ = log
(

λ+
λ−

)
. (C.7)

Substituting equation C.7 in C.3, we obtain the procedure of the spiking
MSPRT model:

log pi (t) = g∗ Yi (t) + C − log

⎛
⎝ N∑

q=1

exp(g∗ Yq (t) + C)

⎞
⎠

= g∗ Yi (t) − log

⎛
⎝ N∑

q=1

exp(g∗ Yq (t))

⎞
⎠ . (C.8)

C.2 The MSPRT for Spiking Inputs from Tuning Curve. In this
appendix we derive the procedure implementing the MSPRT when the
firing rates of sensory neurons are generated from tuning curves. For the
multiple alternative task described in section 5.2, the coherent direction of
the stimulus θ0 is one of the N directions that are equally distributed around
360 degrees. Hence, the N hypotheses Hi (1 ≤ i ≤ N) of the decision task
are

Hi : θ0 = θi , where θi = 360(i − 1)/N. (C.9)

As described in section 5.2, for a given coherent direction θ0 = θi , the neu-
rons selective for the direction θl (1 ≤ l ≤ N) have the firing rate λθl (θi ),
which is specified by the tuning curve defined in equation 5.4. Hence the
hypotheses can be represented as

Hi : λθl (θ0) = λθl (θi ), where 1 ≤ l ≤ N, (C.10)

and the decision task is to distinguish between the N hypothesis on the basis
of the Poisson spike trains. Let us denote the entirety of sensory evidence
available up to time t by input(t) = {Yl (t) : 1 ≤ l ≤ N}, where Yl has the same
definition as in appendix B.1. Similar to the calculation in appendix C.1, the
MSPRT requires us to compute the logarithm of the conditional probability
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of input(t) given Hi being correct (cf. Jazayeri & Movshon, 2006):

log P(input(t) | Hi ) = log

(
N∏

l=1

P(Yl | Hi )

)

=
N∑

l=1

(
log

(λθl (θi )Mt)Yl exp(−λθl (θi )Mt)
Yl !

)

=
N∑

l=1

log(λθl (θi ))Yl + log(Mt)
N∑

l=1

Yl

− Mt
N∑

l=1

λθl (θi ) −
N∑

l=1

log (Yl !) . (C.11)

Note that the last three terms on the right-hand side of equation C.11 do not
depend on the hypotheses, and hence denoting their sum by C , we have:

log P(input(t) | Hi ) =
N∑

l=1

log (λθl (θi )) Yl (t) + C. (C.12)

Following the same calculation as in appendix C.1, the procedure imple-
menting the MSPRT with spiking inputs from tuning curves is to compute

log pi (t) =
N∑

l=1

log (λθl (θi )) Yl (t)

− log

⎛
⎝ N∑

q=1

exp

(
N∑

l=1

log
(
λθl (θq )

)
Yl (t)

)⎞⎠ (C.13)

and make a choice as soon as any log pi (t) exceeds the decision threshold.

Appendix D: Optimal Decision Making Without Knowledge
of Task Difficulty

This appendix considers the problem of whether the task difficulty has to
be known a priori in the spiking and tuned MSPRT models. Following the
notation in appendix B.2, let Xk

i be the numbers of incoming spikes from
one of M neurons in the ith population during the interval [(k − 1)δ, kδ],
and let vector Xk (Xk = {Xk

1, Xk
2, . . . , Xk

N}) be the total number of spikes from
all sensory neurons during the kth interval.
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Beck et al. (2008) have shown that a decision process involving linear
integration of sensory evidence will be independent of task difficulty if the
conditional probability of the firing of sensory neurons given alternative i
being correct can be decomposed into the following product (see equation
4 in Beck et al., 2008),

p(Xk | i) = �(Xk, c) exp

⎛
⎝∑

j

h j (i)Xk
j

⎞
⎠ , (D.1)

where c is a collection of nuisance parameters (e.g., motion coherence,
population size). � is a function that does not depend on alternative i being
considered, and h is a function that depends on i , but not on parameters
related to task difficulty (i.e., λ− and λ+).

In the spiking MSPRT model, the probability of observing Xk in the kth
interval given is equal to

f (Xk | i) = (λ+Mδ)Xk
i exp(−λ+Mδ)

Xk
i !

∏
j �=i

(
(λ−Mδ)Xk

j exp(−λ−Mδ)
Xk

j !

)
.

(D.2)

We now show under what assumptions equation D.2 can be decomposed
according to equation D.1. Algebraic manipulations on D.2 give

f (Xk | i) =
⎧⎨
⎩ 1∏N

j=1 Xk
j !

exp(−λ+Mδ)
[
exp(−λ−Mδ)

]N−1
N∏

j=1

(
λ−Mδ

)Xk
j

⎫⎬
⎭

× exp
(

Xk
i log

λ+
λ−

)
. (D.3)

Note that the terms in the braces do not depend on i , so they can form
function � in equation D.1. The last term of equation D.3 can be decomposed
as in equation D.1, only if one assumes that λ+/λ− is constant (denoted by
η) and does not vary with task difficulty. Then the function h can be defined
as

h j (i) =
⎧⎨
⎩ log

λ+
λ−

= log η, if i = j,

0, otherwise.

(D.4)
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In the tuned MSPRT model, the probability of observing Xk in the kth
interval is equal to

f (Xk | i) =
N∏

j=1

(
λθ j (θi )Mδ

)Xk
j exp

( − λθ j (θi )Mδ
)

Xk
j !

=
{

exp
(
Mδ

∑N
j=1 (−λθ j (θi ))

)
∏N

j=1 Xk
j !

}
exp

⎛
⎝ N∑

j=1

Xk
j log

(
λθ j (θi )Mδ

)⎞⎠ .

(D.5)

According to equations 5.4 and 5.5, λθ j (θi ) can be written as

λθ j (θi ) = λ− + (λ+ − λ−)F (i, j), (D.6)

where F (i, j) is a function of i and j describing the shape of the tuning curve,
independently from its maximum and minimum values (that depend on
λ+ and λ−). Let us transform the right term of equation D.5:

exp

⎛
⎝ N∑

j=1

Xk
j log(λθ j (θi )Mδ)

⎞
⎠

= exp

⎛
⎝ N∑

j=1

Xk
j log(Mδ)

⎞
⎠ exp

⎛
⎝ N∑

j=1

Xk
j log(λ− + (λ+ − λ−)F (i, j))

⎞
⎠

= exp

⎛
⎝ N∑

j=1

Xk
j log(Mδλ−)

⎞
⎠

× exp

⎛
⎝ N∑

j=1

Xk
j log

(
1 +

(
λ+
λ−

− 1
)

F (i, j)
)⎞⎠ . (D.7)

Substituting equation D.7 in D.5, we have

f (Xk | i)

⎧⎨
⎩

exp
(

Mδ
∑N

j=1 (−λθ j (θi ))
)

∏N
j=1 Xk

j !
exp

⎛
⎝ N∑

j=1

Xk
j log(Mδλ−)

⎞
⎠
⎫⎬
⎭

exp

⎛
⎝ N∑

j=1

Xk
j log

(
1 +

(
λ+
λ−

− 1
)

F (i, j)
)⎞⎠ . (D.8)
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If we keep the assumption that the tuning curves of sensory neurons have
identical shape (similar to the assumption made by Ma, Beck, Latham, &
Pouget, 2006),

∑N
j=1(−λθ j (θi )) is a constant independent of i , and then the

terms in the braces in equation D.8 can form function � in equation D.2.
Similarly to the spiking MSPRT model in equation D.3, when λ+/λ− is a
constant, equation D.8 can be decomposed according to D.1 and hence the
tuned MSPRT model does not require the task difficulty to be known a
priori.
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