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This article seeks to integrate two sets of theories describing action se-
lection in the basal ganglia: reinforcement learning theories describing
learning which actions to select to maximize reward and decision-making
theories proposing that the basal ganglia selects actions on the basis of
sensory evidence accumulated in the cortex. In particular, we present a
model that integrates the actor-critic model of reinforcement learning
and a model assuming that the cortico-basal-ganglia circuit implements
a statistically optimal decision-making procedure. The values of corico-
striatal weights required for optimal decision making in our model differ
from those provided by standard reinforcement learning models. Nev-
ertheless, we show that an actor-critic model converges to the weights
required for optimal decision making when biologically realistic limits
on synaptic weights are introduced. We also describe the model’s predic-
tions concerning reaction times and neural responses during learning,
and we discuss directions required for further integration of reinforce-
ment learning and optimal decision-making theories.

1 Introduction

The basal ganglia are a set of subcortical nuclei critically involved in action
selection. This article seeks to integrate two sets of theories concerning ac-
tion selection in the basal ganglia: reinforcement learning (RL) and optimal
decision-making (DM) theories. The RL theories describe the process of
learning which action to select for a given stimulus to maximize the reward
(Frank, Seeberger, & O’Reilly, 2004; Montague, Dayan, & Sejnowski, 1996;
O’Doherty et al., 2004; Schultz, Dayan, & Montague, 1997; Sutton & Barto,
1998). By contrast the DM theories assume that the animal has acquired a
stimulus-response mapping, and they describe the process of selecting an
action corresponding to the stimulus most supported by incoming sensory
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evidence (Brown, Bullock, & Grossberg, 2004; Frank, 2006; Gurney, Prescott,
& Redgrave, 2001; Humphries, Stewart, & Gurney, 2006; Lo & Wang, 2006;
Redgrave, Prescott, & Gurney, 1999). The DM theories further assume that
the stimulus and its neural representation are noisy, and they describe the
process of integration of sensory evidence over time, until a criterion of
confidence in stimulus identity is met. It has recently been proposed that
the cortico-basal-ganglia circuit selects actions on the basis on noisy inputs
in a statistically optimal way, thereby minimizing decision time (Bogacz
& Gurney, 2007), and we refer to this theory as the optimal DM theory.
Thus, the RL and DM theories concern two types of uncertainty that need
to be dealt with during choice: the RL theories assume that the animal is
uncertain of the expected rewards for selecting different actions, while the
DM theories assume that initially after the stimulus onset, the animal is
uncertain of the stimulus identity.

The RL and optimal DM theories have been used to describe both neuro-
physiologic and behavioral data. The RL theories have been used to explain
firing properties of dopaminergic neurons (Kakade & Dayan, 2002; Schultz
et al., 1997; Tobler, Fiorillo, & Schultz, 2005; Ungless, Magill, & Bolam, 2004)
and counterintuitive patterns of choices that subjects make in learning tasks
(Bogacz, McClure, Li, Cohen, & Montague, 2007; Frank et al., 2004). The op-
timal DM theory describes firing properties of neurons in the basal ganglia
(Bogacz & Gurney, 2007) and distributions of reaction times due to its equiv-
alence with the diffusion model (Ratcliff, 2006; Ratcliff, Gomez, & McKoon,
2004; Ratcliff & Smith, 2004).

So far, the two sets of theories have mostly been used to address the
data from different phases of task acquisition. The RL theories focus on
the learning phase when the animal has to discover the stimulus-response
mapping, and they assume that this mapping is initially learned in the
basal ganglia (Atallah, Lopez-Paniagua, Rudy, & O’Reilly, 2007; Frank et al.,
2004; O’Doherty et al., 2004; Samejima, Ueda, Doya, & Kimura, 2005). By
contrast, the DM theories often focus on the proficient phase when the
stimulus-response mapping has been kept constant for long periods, and
they assume that the mapping is stored in the cortex (Bogacz & Gurney, 2007;
Gurney et al., 2001). (A similar assumption is made by models describing
DM processes in the cortex: Mazurek, Roitman, Ditterich, & Shadlen, 2003;
Shadlen & Newsome, 2001; Usher & McClelland, 2001; Wang, 2002.)

RL and DM theories describe different aspects of information process-
ing in the cortico-basal-ganglia circuit, but it has not been investigated
before if this circuit can simultaneously implement RL and optimal DM.
This question is addressed in this article which is organized as follows. Sec-
tion 2 reviews relevant elements of RL and optimal DM theories. Then sec-
tion 3 presents a new model integrating RL and optimal DM, and section 4
shows results of its simulations. Finally, section 5 discusses predictions of
the model and further research required to integrate RL and optimal DM
theories.
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Figure 1: Main connections of the basal ganglia, based on Gurney, Prescott, and
Redgrave (2001). Boxes denote brain areas: Output—output nuclei: substantia
nigra pars reticulate and entopeduncular nucleus (or its homologue, GPi in
primates); STN—subthalamic nucleus, GP—globus pallidus (or its homologue
GPe in primates); and dopamine–areas releasing dopamine (substantia nigra
pars compacta and ventral tegmental area). Nuclei included in the basal ganglia
are within the dotted rectangle. Arrows denote excitatory connections, lines
ending with circles denote inhibitory connections, and lines ending with a
dashed circle denote modulatory dopaminergic projection.

2 Review of RL and Optimal DM theories

This section briefly reviews relevant aspects of basal ganglia anatomy, the
optimal DM model1 and the actor-critic model of RL.

2.1 Functional Anatomy of the Basal Ganglia. The main connections of
the basal ganglia are shown in Figure 1. Different neurons within the basal
nuclei are selective for different movements; hence, it has been proposed
that the basal ganglia are divided into channels corresponding to individ-
ual actions that traverse all nuclei (Alexander, DeLong, & Strick, 1986). The
connections between the nuclei are predominantly within a channel (e.g.,
striatal neurons selective for right-hand movement project to output neu-
rons selective for right-hand movement), with an exception of connections
from the subthalamic nucleus (STN), which are more diffused (Parent &
Smith, 1987).

1The model reviewed here differs from that described by Bogacz and Gurney (2007) in
that the basal ganglia sends feedback to the cortex as described by Bogacz (2009). Also, the
model is introduced in a novel, more intuitive way (Bayes’ theorem is explicitly mapped
on the cortico-basal-ganglia circuit).



820 R. Bogacz and T. Larsen

In a default state, the output nuclei send tonic inhibition to the thalamus
and brain stem, blocking cortical control over muscles. An action is selected
when the inhibition from the corresponding channel in the output nuclei is
lowered (Chevalier, Vacher, Deniau, & Desban, 1985; Deniau & Chevalier,
1985). This may happen when the striatal neurons in the corresponding
channel become sufficiently active to block the output neurons.

All basal nuclei receive input from dopaminergic neurons, which mod-
ulate the activity and synaptic plasticity in the basal ganglia. The strongest
dopaminergic input is provided to the striatum.

2.2 Optimal DM in the Cortico-Basal-Ganglia Circuit. In this section,
we describe relevant experimental studies of neural bases of DM, a sta-
tistically optimal DM procedure, and its implementation in the model of
the cortico-basal-ganglia-thalamic circuit (Bogacz, 2009; Bogacz & Gurney,
2007).

2.2.1 Decision Mechanisms in the Cortex. Neural bases of DM are typically
studied in a task in which a monkey is presented with a stimulus consisting
of moving dots. The majority of dots are moving randomly, while a certain
proportion is moving coherently left or right. The subject is required to
identify the direction of the coherent motion and make an eye movement
in this direction in order to receive a reward (Britten, Shadlen, Newsome,
& Movshon, 1993). Animals are typically performing this task for several
months before neural responses are studied.

Single-cell recordings suggest that in this task, the neurons in the me-
dial temporal (MT) area, which are involved in motion processing, provide
sensory input that depends on the stimulus presented. The MT neurons
have a preferred direction of motion, and their firing rate is proportional to
the magnitude of motion in their preferred direction (Britten et al., 1993).
If the coherent fraction of dots is moving left, then on average, the activity
of MT neurons selective for leftward motion is higher than of the neurons
selective for rightward motion. Thus, the decision problem faced by brain
regions “listening to MT” may be formulated as identifying which popula-
tion of sensory neurons has the highest mean (Gold & Shadlen, 2001, 2002).
However, this identification is not trivial because the responses of sensory
neurons are noisy (due to noise present in the stimulus and neural repre-
sentation); hence, they need to be “observed” for a period of time before an
accurate decision may be made.

Indeed, the neural correlates of information accumulation in this
paradigm have been observed in neurons in the lateral intraparietal (LIP)
area and the frontal eye field (FEF). These neurons respond selectively be-
fore and during saccades in their preferred direction. During the motion
discrimination task, as the monkey’s confidence in one of the responses
grows, the neurons selective for this response gradually increase their fir-
ing rate (Kiani & Shadlen, 2009; Roitman & Shadlen, 2002; Schall, 2001;
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Shadlen & Newsome, 2001). In this article, we refer to these neurons as
integrators.

2.2.2 DM Procedure. An optimal procedure for making a choice between
two alternatives on the basis of noisy sequentially incoming data is pro-
vided by the sequential probability ratio Test (SPRT) (Wald, 1947). The
SPRT minimizes decision time for any required accuracy (Wald & Wol-
fowitz, 1948). Several studies suggested how SPRT could be implemented
in simple networks in the cortex (Bogacz, Brown, Moehlis, Holmes, & Co-
hen, 2006; Gold & Shadlen, 2002, 2007). A generalization of SPRT to multiple
alternatives has been developed. Called the multihypothesis SPRT (MSPRT)
(Baum & Veeravalli, 1994), it has been shown analytically to be asymptot-
ically optimal, that is, to minimize the decision time for required accuracy
when the required accuracy converges to 100% (Dragalin, Tertakovsky, &
Veeravalli, 1999). In simulations, it appears to make as fast or faster choices
than any other well-known algorithm when the required accuracy is lower
(McMillen & Holmes, 2006). For example, in simulations with the level
of noise in sensory input estimated from experimental data, the MSPRT
achieved approximately 20% faster decision times with accuracy at 99% in
choosing among 10 alternatives than simpler models did (race and leaky
competing accumulator models) (Bogacz & Gurney, 2007). In this article,
we conjecture that MSPRT has the same optimality property as SPRT and
also refer to it as optimal.

The MSPRT is a statistical test between N hypotheses, which we now
define for the context of choice based on sensory input. Assume that time
is divided into discrete intervals, and let xi (t) denote the total number of
spikes produced by the population of sensory neurons selective for alter-
native i during interval t. Let hypothesis Hi correspond to alternative i
being correct, so let Hi state that sensory input xi (t) has the highest mean.
To define the hypotheses precisely, one needs to assume the probability
distribution of xi (t). For example, Bogacz and Gurney (2007) assumed that
the input xi (t) produced by sensory population i can be approximated by a
gaussian distribution2 with mean Ii and variance σ 2, and defined hypothe-
ses Hi : Ii = I+, I j �=i = I−, where I+ and I− are the mean numbers of spikes
per interval produced by sensory neurons for preferred and nonpreferred
stimuli, respectively.

Let x(t) denote the total sensory input during interval t (thus, x(t) is a
vector [x1(t), . . ., xN(t)]). According to the MSPRT, at each moment of time

2Zhang and Bogacz (2010) showed that the model of basal ganglia also performs
MSPRT for a more realistic assumption that spikes produced by the sensory neurons can
be described by Poisson processes. However, for simplicity of explanation, in this article,
we assume that the inputs can be approximated by gaussian distributions.
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and for each alternative, one computes the probability of this alternative
being correct given the sensory input so far, which we denote by Pi (t):

P i (t) = P(Hi |x (1, . . . , t)). (2.1)

According to the MSPRT the choice should be made when any of Pi (t)
exceeds a fixed threshold; otherwise, the decision process should continue.

Let us consider how Pi (t) can be calculated. Let us assume that at the
start of each trial, we do not have any prior expectations about the direction
of movement, so our initial estimates of the probabilities of left and right
are equal to Pi (0) = 1/N. Let us further assume that x(t) are statistically
independent across different time intervals t. After each time interval during
which we observe the sensory input x(t), the probabilities can be updated
according to Bayes’ theorem:

Pi (t) = Pi (t − 1)P(x(t)|Hi )
P(x(t))

. (2.2)

According to equation 2.2, the prior estimates Pi (t–1) are updated by mul-
tiplying them by the probability densities of observing the sensory input
given the corresponding hypotheses. Additionally, to ensure that the up-
dated probabilities Pi (t) add up to 1, the product in equation 2.2 is divided
by a normalization term P(x(t)) that is equal to the following probability
density:

P(x(t)) =
N∑

i=1

Pi (t − 1)P(x(t)|Hi ). (2.3)

To illustrate how the computation of the posterior probabilities could be
performed in a neural circuit, let us consider an example of the moving
dots task with two alternatives: left (L) and right (R). Figure 2a represents
equation 2.2 as a network of computational elements. In order to calculate
the posterior probabilities PL (t) and PR(t), the prior probabilities and the
likelihoods of the observed sensory input given the two hypotheses need
to be multiplied (top circles in Figure 2a), and these products need to be
divided by the normalization term. The normalization term is simply the
sum of these products (computed in the right circle in Figure 2a). The
posterior probabilities become the priors for the next time interval; hence,
they need to be fed back with a time delay (arrows connecting bottom circles
to top circles in Figure 2a).

The network in Figure 2a involves multiplication and division, which
are difficult to compute by neurons. This problem can be solved by ap-
plying a logarithm to all terms computed in the network as shown in Fig-
ure 2b. The logarithm changes multiplication into addition and division into
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Figure 2: Representation of the computation of the posterior probabilities of
dots moving left and right (a) and their logarithms (b). Circles denote mathe-
matical operations, and arrows denote the flow of information. Black and gray
pathways show computations of the posterior probabilities of dots moving left
and right, respectively.

subtraction. The computation of the normalization term becomes slightly
more complex, as the inputs to the node computing it (the right circle in
Figure 2b) need to be exponentiated before addition, and a logarithm of the
resulting sum has to be taken.

The application of logarithm brings another benefit: it has been shown
that log P(x(t)|Hi ) can be decomposed (for commonly used assumptions
about distribution of xi (t)) (Bogacz & Gurney, 2007; Gold & Shadlen, 2001,
2002; Zhang & Bogacz, 2010):

log P(x (t)|Hi ) = gxi (t) − b(t), (2.4)

where g is a constant (for the hypotheses defined above, g = (I+–I−)/σ 2;
Bogacz & Gurney, 2007) and b(t) has the same value for all i. Thanks to
equation 2.4, the information about log P(x(t)|Hi ) can be encoded in the
firing rate of sensory neurons (as we show below).

2.2.3 Neural Implementation. The network of Figure 2b can be mapped on
the known anatomy of the cortico-basal ganglia-thalamic circuit, as shown
in Figure 3a. Before describing the details of the model, we provide an
overview of probabilistic quantities computed in the model (indicated in
labels in Figure 3a; activations b(t) and c in the labels will be discussed later).
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Figure 3: A subset of cortico-basal-ganglia-thalamic circuit required to imple-
ment MSPRT. (a) Architecture of the model. Pairs of circles correspond to brain
areas: sensory—sensory cortex encoding relevant aspects of stimuli (e.g., MT
in motion discrimination task); integrators—cortical region integrating sensory
evidence. The circle labeled “STN & GP” denotes a circuit composed of subtha-
lamic nucleus and globus pallidus. Arrows denote excitatory connections, and
lines ending with circles denote inhibitory connections. Black and gray path-
ways correspond to two sample channels. (b) Equations describing the model.

The cortical integrators3 sum the inputs encoding the logarithm of the prior
probability provided by a feedback from the thalamus and log P(x(t)|Hi )
provided by the input from the sensory neurons. The logarithm of the nor-
malization term is computed in the model by a network of two nuclei: STN

3The integrators in the model correspond to neurons integrating sensory inputs (see
section 2.2.1). They may correspond to neurons located in the frontal eye field (in tasks
with saccadic response), or premotor cortex (in tasks with motor response), as it is known
that these areas project to basal ganglia. However, the exact roles of each of these cortical
areas in decision formation are currently unknown.
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and globus pallidus (GP) (as described below). The output nuclei compute
the difference between the logarithm of the normalization term and the in-
put from the integrators, as they receive an inhibition from the integrators
via the striatum. Hence, the activity of the neurons in the output nuclei is
proportional to –log Pi (t). But the output nuclei send inhibition to the tha-
lamus, thus, the activities of the thalamic neurons are proportional to log
Pi (t). These posterior probabilities are feedback to the cortical integrators.

Figure 3b lists equations describing the model. In the model, the circuit of
STN and GP computes SG(t) defined in Figure 3b as a nonlinear summation
of its inputs from cortical integrators. Bogacz and Gurney (2007) showed
that SG(t) can be computed in a model of the STN-GP circuit if the STN and
GP neurons have particular input-output transfer functions. These input-
output relationships required for computation of SG(t) agree with those
observed in in vivo studies of STN and GP neurons (Hallworth, Wilson, &
Bevan, 2003; Nambu & Llinas, 1994; Wilson, Weyrick, Terman, Hallworth,
& Bevan, 2004).

The computations in the model of Figure 3 are analogous to those in
the network of Figure 2b, but additional excitatory inputs are included that
ensure that neural activities in the model are not negative. Note that some
of the values in the labels in Figure 2b are negative, because a logarithm
of a probability is negative (as a probability is lower than 1), but the firing
rates cannot be negative. Thus, in the model, the activities of cortical inte-
grators are initialized to the logarithms of prior probabilities of alternatives
increased by a constant c (see Figure 3b). Similarly, the thalamus also re-
ceives an excitatory input equal to c. The integrators in the model receive
input from sensory neurons equal to g xi (t), which according to equation 2.4
is equal to log P(x(t)|Hi ) + b(t).

We now show that adding the above excitatory inputs (b(t) and c) does not
affect the activity of the output nuclei in the model. In particular, we show
that for the model defined in Figure 3b, the activity of the output nuclei is

OUTi (t) = − log Pi (t). (2.5)

We show that equation 2.5 holds using mathematical induction. We
consider the values of OUTi (t) at different time steps (i.e., we perform
induction on t). In the first step, we show that equation 2.5 holds for t = 0.
According to Figure 3b the input provided by STN and GP at t = 0 is

SG(0) = log
N∑

i=1

exp
(

log
1
N

+ c
)

= log

((
N∑

i=1

exp log
1
N

)
exp c

)
= c.

(2.6)

Hence, according to Figure 3b, the activity of output nuclei is

OUTi (0) = −INTi (0) + SG(0) = − log 1/N − c + c. (2.7)
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Note that c cancels in equation 2.7, which illustrates the property of the
model that any value added to the activity of all integrators does not affect
the activity of output nuclei. Equation 2.7 implies that equation 2.5 holds
for t = 0 (as we assumed that Pi (0) = 1/N).

Now we will show that if the inductive hypothesis of equation 2.5 is
satisfied at time t – 1, it is also satisfied at time t (which, according to
mathematical induction, will imply that equation 2.5 is satisfied for all t ≥
1). The activity of integrators is (from Figure 3b and equations 2.4 and 2.5;
also see the labels in Figure 3a)

INTi (t) = log Pi (t − 1) + c + log P(x (t)|Hi ) + b(t). (2.8)

The input provided by STN and GP becomes (using manipulations as in
equation 2.6)

SG(t) = log
N∑

i=1

Pi (t)P(x(t)|Hi ) + c + b(t). (2.9)

Using equation 2.3, we get

SG(t) = log P(x(t)) + c + b(t). (2.10)

The activity of output nuclei becomes

OUTi (t) =− log Pi (t − 1) − c − log P(x(t)|Hi ) − b(t)

+ log P(x(t)) + c + b(t). (2.11)

Note that b(t) and c cancel, and equation 2.11 together with Bayes’ theorem
(see equation 2.2), give equation 2.5, which completes the proof.

In the model, a choice is made when the activity of any channel in the out-
put nuclei, –log Pi (t), decreases below a threshold (consistent with selection
by disinhibition; see section 2.1). This is equivalent to making a choice as
soon as any Pi (t) exceeds a threshold; thus, the model implements MSPRT.

The integrators receive input g xi (t), which seems to suggest that the
correct value of constant g (satisfying equation 2.4) needs to be known.
However, if g is set to a value higher than that for which equation 2.4 is
satisfied, the performance of the model does not decrease (shown numer-
ically in Figure 3B in Bogacz & Gurney 2007, and justified analytically in
appendix C in Bogacz & Gurney, 2007). Hence the precise value of g does
not need to be known.

2.3 RL in Basal Ganglia Circuit. RL theories are typically used to de-
scribe performance in tasks in which rewarded responses for particular
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Figure 4: An actor-critic model mapped on a subset of the basal ganglia circuit.
Notation as in Figure 3.

stimuli need to be learned by trial and error, but the stimulus is clearly
presented and thus easy to identify. Hence, the temporal integration is not
considered, and the model variables do not change within the duration of
an individual selection process. Let xu be a binary variable denoting the
presence or absence of stimulus u. RL theories typically assume that xu is
computed in the sensory cortex (Frank & Claus, 2006; Frank et al., 2004). In
RL models, the probabilities of selecting actions i depend on action values,
which we denote by yi . RL theories assume that yi are computed by neurons
in striatal channel i on the basis of their cortical inputs:

yi =
∑

u

wi,uxu, (2.12)

where wi,u are the weights of connections from cortical neurons represent-
ing stimulus u to striatal neurons in channel i. The network that could
support this calculation is shown in the part of Figure 4 labeled “Actor.”
The stratial neurons project to the output nuclei; hence, the higher the ac-
tion value computed by striatal neurons in a given channel, the higher
the chance is that the corresponding action will be executed. Thus in this
network, the stimulus-response mapping is encoded in the weights of con-
nections between sensory and striatal neurons. Note that we now use two
different indices for stimuli and actions (u and i), because at the start of RL
experiments, it is usually not known which action is correct for a given stim-
ulus or whether this mapping can change in the course of an experiment.

After each choice, the weights wi ,u are modified. Several learning rules
have been proposed, and here we focus on an actor-critic model (Sutton
& Barto, 1998), which is supported by experimental data (O’Doherty et al.,
2004). This model is illustrated in Figure 4 and has two parts. The first part,
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an actor, learns which action i to select for stimulus u, and it corresponds
to the network discussed so far. A second additional part, a critic, learns
an average expected reward associated with the stimulus alone, that is,
it learns the average reward obtained on all trials when stimulus u was
presented; we denote it by vu.

Doya (2000) proposed that vu are encoded in the synaptic weights of stri-
atal neurons in striosomes or “patches” that project to dopaminergic areas,
while wi ,u are encoded in the synaptic weights of striatal neurons in the
surrounding “matrix” that project to the output nuclei (Gerfen, 1992). The
patches are more common in the ventral striatum (Gerfen, 1992) that has
been proposed to be involved in the computations of the critic (O’Doherty
et al., 2004), while the matrix is more prevalent in the dorsal striatum asso-
ciated with the actor.

Much evidence suggests that the firing rate of dopaminergic neurons
represents the reward prediction error δ, defined as the difference between
obtained reward (r) and expected reward (Montague et al., 1996; Schultz
et al., 1997; Tobler et al., 2005). Doya (2000) proposed that the dopaminergic
neurons can compute δ as they receive excitation from areas encoding ob-
tained reward and inhibition from striatal patch neurons. Thus, the firing
rate of the dopaminergic neurons encodes

δ = r − vpresented . (2.13)

The dopaminergic neurons send projections to striatum that modulate
synaptic plasticity of cortico-striatal connections (Reynolds, Hyland, &
Wickens, 2001). Hence, the expected reward for the stimulus presented,
encoded in the critic, is modified proportionally to δ:

vpresented ← vpresented + ηδ. (2.14)

In equation 2.14, η denotes the learning rate. The weights in the actor wi ,u are
also modified proportionally to δ, and a few versions of the actor learning
rule have been proposed (Sutton & Barto, 1998). For example, in one of
the versions, the weights between sensory neurons encoding presented
stimulus and striatal neurons in a channel corresponding to the chosen
action are updated according to Sutton and Barto (1998):

wchosen,presented ← wchosen,presented + ηδ. (2.15)

2.4 What Do the RL and DM Models Optimize? Both RL and DM
models optimize criteria connected with reward. RL models learn which
actions to select to maximize the expected reward per choice in a learning
task. The optimal DM model maximizes the reward rate, defined as the
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average reward per unit of time. The particular expression for the reward
rate depends on the task. Gold and Shadlen (2002) consider a task in which
a subject receives a unit of reward for correct choices, and there is a delay D
between the response and the onset of the next trial. In this task, the expected
reward rate is equal to the ratio of a probability of making a correct choice
and the average duration of a trial:

RR = Accuracy

RT + D
. (2.16)

In this task, the average duration of a trial depends on reaction time RT;
hence, to maximize reward rate, the choices also need to be fast. The optimal
DM model maximizes the reward rate in a wide range of sequential choice
tasks (including the above) when the threshold parameter, controlling the
speed-accuracy trade-off, is chosen optimally (Bogacz, 2009; Bogacz et al.,
2006). This analysis suggests that to maximize the reward rate in learning
tasks, both RL and optimal DM need to be employed.

3 Integrated Model

3.1 Overview of the Model. We now present a model of the cortico-
basal-ganglia circuit that performs DM approximating MSPRT on the basis
of stimulus-response mapping learned with RL. Figure 5a shows the archi-
tecture of the model, which combines the models of Figures 3 and 4. The
model consists of two parts: an actor and a critic. The actor selects an action
on the basis of the noisy sensory input, which it integrates, and the weights
of striatal matrix neurons, which encode the stimulus-response mapping.
The critic computes the expected reward associated with the stimulus on
the basis of the noisy sensory input that is also integrated by the critic, and
the weights of striatal patch neurons. The dopaminergic neurons compute
the reward prediction error on the basis of the expected reward found by
the critic and control the modifications of all striatal weights.

Figure 5b shows equations describing the model; they use a notation
combining notations from sections 2.2 and 2.3 and denote the input from
the sensory neurons selective for stimulus u at time t by xu(t). The actor
in this integrated model is formed by a modification of the optimal DM
model (see Figure 3) in which the sensory neurons project to the stria-
tum rather than cortical integrators. According to Figure 5b, the activity
of striatal matrix neurons associated with particular action depends on
weights wi,u.

The critic also includes cortical integrators that accumulate sensory infor-
mation on stimulus identity. For simplicity, we consider a very basic model
of this integration (see Figure 5b), because in our simulations, it is only
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Figure 5: The integrated model. (a) Architecture of the model. Notation as in
Figure 3. (b) Equations describing the model.

important which INTu
critic is the highest (as explained later), and extending

the model of integration (e.g., adding inhibitory connections or integrating
via cortico-basal-ganglia-thalamic loops) would not change which INTu

critic

is the highest.
The integration in the actor is performed until the OUTi decreases be-

low some threshold indicating that the decision has been made with the
required precision. At this time, the integration in the critic is stopped as
well, and the stimulus with the highest INTcritic

u is selected as the best guess
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for the stimulus presented. In the model, this is represented by setting
INTcritic

u to4

INTcritic
u =

{
1 if INTcritic

u = max
u

(INTcritic
u )

0 otherwise.
(3.1)

Because the connections between critic integrators and the striatal patch
neurons are weighted according to the expected reward for each stimulus
(see Figure 5b), the activity of the striatal patch neurons selective for the
selected stimulus u is equal to

STRcritic
u = vuINTcritic

u = vu. (3.2)

The striatum then projects the information about the expected reward vu

via inhibitory connections to the dopaminergic neurons, which will also
receive excitatory input indicating the reward given by the action taken,
and through the combination of the two inputs calculate prediction error
δ as in equation 2.13. The prediction error, together with the learning rate,
determines how the weights are modified according to equations 2.14 and
2.15.

For this model to approximate optimal DM, wi,u need to have differ-
ent values from those provided by standard RL models, as we describe
in the section 3.2. Nevertheless, we show in section 3.3 that desired wi,u

can be learned when biologically realistic limits on synaptic weights are
introduced, and in section 3.4 that with such weights, the proposed model
approximates MSPRT.

3.2 Striatal Weights Required for Optimal DM. The striatal weights
required for optimal DM differ from those provided by standard RL models
in tasks in which some actions may be more rewarded. Let ri ,u denote the
reward delivered after choosing action i for stimulus u. An example of a
task with unequally rewarded actions is a modification of a motion dis-
crimination task in which a subject receives two drops of juice for leftward
saccade when dots are moving left (r1,1 = 2), one drop of juice for rightward
saccade when dots are moving right (r2,2 = 1), and no juice for saccades
opposite to the direction of motion (r1,2 = r2,1 = 0). We refer to this as the
biased reward task.

4We do not model equation 3.2 explicitly, but we note that setting the winning INTcritic
u

to the ceiled value of 1 could result from a transient increase in gain of integrators, as it has
been proposed that such gain increase may occur at the moment of decision (Shea-Brown,
Gilzenrat, & Cohen, 2008). Conversely, setting the other INTcritic

u to 0 can be a result of
inhibition from the winning integrator.
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For such tasks, in standard RL models, ri ,u determine striatal weights
such that the higher ri ,u is, the higher wi,u is. However, to maximize the
probability of reward in a given trial of the biased reward task, one needs
to choose an action that is most rewarded for the presented stimulus, and
thus to implement optimal DM, the striatal weights should be equal to

wi,u =
{

1 if action i is the most rewarded action for stimulus u

0 otherwise.
(3.3)

Such weights allow choosing the most rewarded action for the noisy stim-
ulus, while the weights provided by standard RL models may not allow
the most rewarded choice, as we show with an example. Let us denote the
mean input from sensory neurons selective for stimulus u by Iu. If the dots
moved right with low coherence, so that the mean input from right sensory
neurons (e.g., I2 = 4) was just slightly higher than the left sensory neurons
(e.g., I1 = 3), then with weights of equation 3.3, the average input received
by the right channel (w2,2I2 = I2 = 4) will be higher than the average in-
put received by the left channel (w1,1I1 = I1 = 3). Thus, after long enough
integration, INT2 will eventually become higher than INT1, and the more
rewarded action of the right saccade will be chosen. Note that this may
not happen if the striatal weights were set according to classical RL models
(e.g., if wi ,u = ri ,u ), because then the mean input to the left channel (w1,1I1

= 6) may be higher than the mean input to the right channel (w2,2I2 = 4)
and the unrewarded left saccade is most likely to be chosen.

The above argument shows that with weights of equation 3.3, the most
rewarded action can be chosen if enough time is allowed. However, to max-
imize the reward rate defined in section 2.4, it is often necessary to trade
accuracy for speed. If the decision time is limited, the presented stimulus
may not be identified with 100% accuracy, and reward magnitudes (ri ,u )
may provide useful information in guiding the choice. The reward magni-
tudes can be estimated from previous trials; thus, they provide information
prior to the stimulus in the current trial, so they should influence a prior
probability of selecting the alternatives. As explained in section 2.2.3, the
prior probabilities determine the initial values of the integrators. Bogacz
et al. (2006) have shown that to maximize the reward rate in the biased
reward task, the initial values of the integrators INTi (0) should be modified
proportionally to the logarithms of the reward for corresponding actions:

INTi (0) = α log ri,i + c, (3.4)

where α is a proportionality constant that depends on task parameters (see
Bogacz et al., 2006, for details). According to equation 3.4, the initial value
of the integrator corresponding to a more rewarded response needs to be
higher than the one corresponding to a less rewarded response (thus, less
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sensory input is required to trigger the more rewarded response). Such
shifts in INTi (0) are consistent with observed increases in the activity of
neurons in LIP (Platt & Glimcher, 1999) and premotor cortex (Roesch &
Olson, 2004) selective for more rewarded action before stimulus onset.

With weights of equation 3.3, and initial values of integrators depending
on reward magnitudes, a subject can correctly estimate which action is more
likely to be rewarded throughout the whole decision process (and hence can
choose the most rewarded actions at different speed-accuracy trade-offs).
In particular, at the beginning of the decision process, when little sensory
evidence has been provided, the activities of integrators depend mostly on
the prior reward expectations. And later, during the decision process, the
relative magnitudes of integrators depend to a greater and greater extent
on the accumulated sensory input and to a lesser and lesser extent on the
prior reward expectations.

To implement optimal DM in tasks with biased rewards, the magnitudes
of rewards need to be learned and maintained somewhere to influence
INTi (0). It has been recently shown that ri ,u can be learned even when
stimulus uncertainty is present (Larsen, Leslie, Collins, & Bogacz, 2010).
With stimulus uncertainty, it is not obvious to which stimulus the obtained
reward should be attributed. But Larsen et al. (2010) showed that a model
in which estimates of ri ,u are updated proportionally to the confidence that
stimulus u was present (computed on the basis of sensory input and re-
ward magnitude) converges to the correct estimates.5 Similarly like Frank
and Claus (2006), we propose that ri ,u are learned in the orbitofrontal cor-
tex, because a large amount of experimental data suggests that the magni-
tudes of rewards associated with stimuli are learned and maintained during
choice in this area (Roesch & Olson, 2004; Wallis, 2007; Wallis & Miller, 2003).
However, since this article focuses on the basal ganglia, we do not explicitly
model learning of the optimal values of INTi (0).

3.3 Learning Striatal Weights Optimizing DM. Here we show that
the actor-critic model (see equations 2.13 to 2.15) learns weights described
by equation 3.3 when the model additionally incorporates the biologically
realistic assumption that the weights wi,u are bounded, that is, they cannot
be negative, and cannot exceed a maximum value, which we set to 1. Thus, if
a weight exceeds the [0, 1] range due to modification according to equation
2.15, it is set to the boundary value: 0 or 1.

We additionally make the following two assumptions: the stimulus is
correctly identified by the critic, and on a proportion of trials e, suboptimal
or exploratory actions are selected. These assumptions may be violated with

5Although in both this article and in Larsen et al. (2010) we address the problem of RL
for noisy stimuli, we develop algorithms that learn different quantities. Here we develop
an algorithm that learns weights given by equation 3.3, whereas Larsen et al. develop an
algorithm that estimates ri ,u .
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noisy stimuli, and in section 4, we investigate in simulations how violating
these two assumptions affects the weight convergence.

Under the above assumptions, the values estimated by the critic converge
to

vu = rbest,u − ε, (3.5)

where rbest ,u = maxi ri ,u and ε is a small, positive constant. This happens
because when stimulus u is presented, on the majority of trials the best
action is chosen, and hence the expected reward for this stimulus is close
to the reward to this action (rbest ,u ). But on a fraction of trials, actions are
chosen with lower rewards, and thus the expected reward for this stimulus
is lower by ε. The value of ε depends on the proportion of exploratory
choices e and the differences between rbest and rewards for choosing other
actions. We now consider two cases.

First, when the best action for stimulus u is chosen, then δ (see equation
2.13) is equal to

δ = rbest,u − vu = rbest,u − rbest,u + ε = ε. (3.6)

Hence, according to equation 2.15, the weight wbest ,u increases, and, as
shown in the appendix, the step size of this increase (ηδ) does not converge
to 0 over iterations; thus, wbest ,u will eventually exceed 1. Once wbest ,u

reaches 1, it will stay at 1 due to the boundaries on wi ,u in our model.
Second, when a suboptimal action for stimulus u is chosen, then δ is

equal to

δ = rsubopt,u − vu = rsubopt,u − rbest,u + ε. (3.7)

If there are only two possible actions, then vu will take a value between
rsubopt ,u and rbest ,u ; hence, δ in equation 3.7 is negative. In a more general
case of multiple alternative actions, rsubopt ,u < rbest,u, hence δ in equation
3.7 is negative as long as ε is sufficiently small, which can be guaranteed
by choosing e sufficiently low. Thus, the weight wsubopt ,u decreases, and
over iterations it will eventually decay below 0 and stay at 0 due to the
boundaries on wi ,u in our model. This completes the argument.

3.4 DM in the Integrated Model. In this section, we show that the
integrated model can approximate MSPRT on the trials following learning
when the striatal weights are equal to values given by equation 3.3.

To simplify notation and without the loss of generality, let us assume that
action i is correct for stimulus u = i (for other stimulus-response mappings,
this could be satisfied by renumbering stimuli). Under this assumption, the
weight set according to equation 3.3 is equal to wi,i = 1 and wi,u�=i = 0.



Reinforcement Learning and Decision Making 835

Hence, the striatal activity is equal to (the third line in the equation below
comes from equation 2.4):

STRi (t) = INTi (t) + g
∑

u

wi,uxu(t) =

= INTi (t) + gxi (t) =
= INTi (t) + log P(x(t)|Hi ) + b(t). (3.8)

We now show, using mathematical induction (analogously as in section
2.2.3), that for t ≥ 1, the activity of channel i in the output nuclei in the
model is

OUTi (t) = − log Pi (t − 1) − (log P(x(t)|Hi ) + b(t)). (3.9)

Let us consider the network activity at the first time step. The activity of
integrators is equal to INTi (1) = log Pi (0) + c. The input provided by the
STN and GP is (using manipulations as in equation 2.6)

SG(1) = log
N∑

i=1

Pi (0) + c. (3.10)

Since the prior probabilities Pi (0) add up to 1, SG(1) = c. Hence, the activity
of the output nuclei is

OUTi (1) = −STRi (1) + SG(1)

= − log Pi (0) − c − (log P(x(1)|Hi ) + b(1)) + c. (3.11)

Thus, at the first time step, the activity of the output nuclei follows equation
3.9. Now we will show that if equation 3.9 is satisfied at time t – 1, it is also
satisfied at time t. If equation 3.9 is satisfied at time t – 1, then the activity
of integrators at time t is (see the labels in Figure 6)

INTi (t) = c − OUTi (t − 1)

= log(Pi (t − 2)P(x(t − 1)|Hi )) + c + b(t − 1). (3.12)

Hence, when equation 2.3 is used, the activity of the STN in the model
becomes

SG(t) = log P(x(t − 1)) + c + b(t − 1). (3.13)

The activity of the output nuclei becomes

OUTi (t) = − log(Pi (t − 2)P(x(t − 1)|Hi )) − (log P(x(t)|Hi )

+ b(t)) + log P(x(t − 1)). (3.14)
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Figure 6: Probabilities encoded by neural activity in the actor. Notation as in
Figure 3.

According to Bayes’ theorem (see equation 2.2), the activity of the output
nuclei in equation 3.14 is equal to that in equation 3.9, which completes the
proof.

Note that the normalization term (equation 3.13), is computed on the
basis of the input from the previous time step. This happens because the
STN receives sensory input from the basal ganglia, thalamus, and cortex,
which introduce delays. Consequently, the activity of the output nuclei is
proportional to –logPi (t – 1) decreased by the sensory input gathered during
the last time step, where the length of the time step in the model is equal to
the time necessary to traverse the cortico-basal-ganglia-thalamic loop. Thus,
this network only approximates MSPRT, and how close this approximation
is depends on how short the time necessary for information to traverse the
cortico-basal-ganglia-thalamic loop is relative to the decision time.

3.5 Consolidation of Stimulus-Response Mapping. It is interesting
to add that the above model supports a memory consolidation mecha-
nism proposed by Ashby, Ennis, and Spiering (2007) for learning stimulus-
response mapping in the connections between sensory and integrator neu-
rons. In particular, note that once the stimulus-response mapping is formed
in cortico-striatal connections, a given integrator will be most active on tri-
als when the corresponding sensory population has the highest mean. For
example, in Figure 6, the black sensory and integrator units will be coactive
on some trials, and gray sensory and integrator units will be coactive on
other trials. Thus simple Hebbian learning (forming connections between
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coactive neuronal populations) will form direct connections between sen-
sory neurons and corresponding integrators (i.e., the connections present
in Figure 3a).

In summary, once the stimulus-response mapping is initially learned
in cortico-striatal connections, the cortico-basal-ganglia circuit can approx-
imate MSPRT. Additionally, at this point, sensory neurons representing
stimuli are coactive with integrator neurons representing corresponding ac-
tions, and the stimulus-response mapping can be learned in cortico-cortical
connections using simple Hebbian rules. This will then allow the network
to implement MSPRT more precisely.

4 Simulation of Striatal Weights Learning

This section describes simulations of learning the striatal weights in the
integrated model. Recall that while proving convergence of striatal weights
to values required for optimal DM in section 3.3, it was assumed that (1)
stimuli are correctly identified and that (2) exploratory choices are made.
First, two simulations (see sections 4.2 and 4.3) investigate how the value
of the decision threshold parameter controlling speed-accuracy trade-off in
the model influences the convergence of the weights. It is shown that when
it is set to the values emphasizing too much speed or accuracy, assumptions
1 or 2 respectively become violated, which leads to different departures of
striatal weights from the optimal values. Then section 4.4 suggests modifi-
cations to the model, allowing convergence of the weights to the optimal
values.

4.1 Methods of Simulations. A single simulation consists of 150 trials,
each consisting of one randomly chosen stimulus presented, one action
taken, and one reward received. The simulation of a trial is divided into
time steps of 0.001 s, and at each time step, the sensory input xu(t) is sampled
from gaussian distribution with mean Iu and variance σ 2. The mean input of
sensory neurons selective for the stimulus u∗ presented on a given simulated
trial is set to Iu∗ = 0.0045, the means of activity of the other neurons are set
to Iu �=u∗ = 0.003, and the variance is σ 2 = 0.00011 (these values result in a
model performance very close to that of the sample participant performing
the moving dots task in the study of Bogacz et al. (2006). The activity of
integrators is initialized to INTi (0) = 0.

Depending on the chosen action, a reward is received according to the
scheme described in section 3.2 where the reward for correct leftward sac-
cade is r1,1 = 2, the reward for correct rightward saccade is r2,2 = 1, and the
reward for incorrect saccades is r1,2 = r2,1 = 0. The weights vu and wi ,u are
then updated with learning rate η = 0.1, and another trial commences.

4.2 Simulations with Speed Emphasis. In the first simulation, the de-
cision threshold is set to 0.6. As can be seen in Figures 7a and 7b, the striatal
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Figure 7: Striatal weights learning in the integrated model during the biased
reward task (r1,1 = 2, r2,2 = 1, r1,2 = r2,1 = 0). The convergence of the striatal
weights for the actions chosen in the context of the stimulus with the higher
reward (a) and the lower reward (b). The dashed lines represent the correct
responses, and the solid lines represent the incorrect responses. (c) The estimated
rewards values. (d) The average decision time for more and less rewarded
stimuli during learning. (e) The average error rate for more and less rewarded
stimuli during learning.

weights converge to the vicinity of the desired values but do not always
reach them. An example is shown in Figure 7a where the weight w1,1 never
converges to 1 as required for optimal behavior. This happens because for
the parameters used in the simulations, assumption 1 is not satisfied; that
is, the stimulus is incorrectly identified on some trials. In particular, when
stimulus2 is presented but the simulated subject mistakenly believes that
stimulus1 is presented and chooses action1, then a reward of 0 is received,
the δ term becomes negative, and the weight is pushed away from 1. For the
same reason, weight w2,2 in Figure 7b does not converge to 1. The expected
reward value as estimated by the critic is plotted in Figure 7c, which shows
that the values learned during single simulations are close to the values av-
eraged over multiple trials, which suggests that the estimation is consistent
between trials.

In Figures 7d and 7e, we can see that as the striatal weights are learned,
the error rates and, to a lesser extent the decision times decrease. There is,
however, a difference in the error rates for the more and the less rewarded
stimuli. Early on, the error rate on trials on which the less rewarded stimulus
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Figure 8: Striatal weights learning in the integrated model during the biased
reward task (r1,1 = 2, r2,2 = 1, r1,2 = r2,1 = 0). The convergence of the striatal
weights for the actions chosen with the decision threshold lowered to 0.4, in
the context of the stimulus with the higher reward (a) and the lower reward
(b). (c) The estimated reward values. In all panels, the dashed lines represent
the correct responses, the solid lines represent the incorrect responses, and the
dotted lines represent single simulations.

is presented is above the initial 50%, whereas the error rate for the more
rewarded stimulus decreases rapidly. This is due to the difference in con-
vergence rates for the weights associated with the two stimuli resulting in
w1,1 > w2,2, and the correct action for the more rewarded (and more con-
verged) stimulus therefore being selected even though the stimulus predicts
otherwise. As an example, imagine the stimulus2 being shown at trial 50.
The mean inputs from sensory neurons would be I1 = 0.003, I2 = 0.0045,
and the weights at trial 50 are w1,1 ≈ 1, w1,2 ≈ 0.2, w2,2 ≈ 0.3, w2,1 ≈ 0.2
(see Figures 7a and 7b). The mean input to the striatal unit representing
action1 (w1,1I1 + w1,2I2 ≈ 1 × 0.003 + 0.2 × 0.0045 = 0.0039) is higher than
to the striatal unit representing action2 (w2,1I1 + w2,2I2 ≈ 0.2 × 0.003 + 0.3
× 0.0045 = 0.00195) even though I1 is lower than I2. However, once both
weights have converged, both stimuli get similar error rates.

Figure 7d also shows that due to the different convergence rates for the
more and the less rewarded stimuli, there is a (smaller) difference in the
decision times for the two stimuli during learning, but not before or after.

4.3 Simulations with Accuracy Emphasis. In the simulations described
in the previous section, the weights did not converge to values of equation
3.3 because stimuli were misinterpreted on some trials. Therefore, one could
anticipate that better convergence can be expected when fewer errors are
made, and hence we repeated the simulation with the decision threshold
lowered to 0.4 (lowering the threshold below which the activity of the
output nuclei needs to decrease results in more accurate decisions). Sur-
prisingly, this change leads to much poorer weight convergence, as can be
seen in Figures 8a and 8b. When looking at the weight changes for the sin-
gle simulation, we can see that it is not because of too many errors by the
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critic, but rather because of too few errors by the actor leading to lack of
exploration—that is, assumption (2) is not satisfied. In the single simulation
in Figures 8a and 8b, it is clear that only two of the weights are modified.
These are the weights w1,1 and w1,2, which implies that in this simulation,
only action1 is chosen, regardless of the stimulus. Notice that within a few
trials, one of the weights becomes much higher than the others, which leads
to the corresponding integrator receiving larger inputs than the alternative,
independent of the stimulus presented. For example, consider a situation
when on trial 20, stimulus2 (i.e., right) is presented; thus, I1 = 0.003, I2 =
0.0045. Although action2 is the correct response, the striatal unit represent-
ing action1 gets much higher average input (w1,1I1 + w1,2I2 ≈ 1 × 0.003 +
0.07 × 0.0045 = 0.00332) than the striatal unit representing action2 (w2,1I1 +
w2,2I2 ≈ 0.2 × 0.003 + 0.2 × 0.0045 = 0.0015). Since in different simulations
different actions become the preferred action, the averaged values of the
weights converge to some value in between the extremes. In Figure 8c, the
value estimated by the critic shows the same behavior with the single sim-
ulations converging to either 0 or rbest,u. The averages converge to values in
between (1 for more rewarded, 0.5 for less rewarded alternative), showing
that each action becomes the preferred action on 50% ofthe simulations.

4.4 Improving Weight Convergence. In this section, we present three
approaches to improving weight convergence. The first two approaches
aim at satisfying assumptions 1 and 2, that is, ensuring that the critic should
make as few errors as possible, while the actor should explore all the options.
First, this property would arise naturally in tasks in which, after a choice, the
subject can continue to observe the stimulus and hence refine the stimulus
information in the critic. In such tasks, the decision threshold in the actor
should be set such that occasionally exploratory choices are made, while
the integration in the critic should continue beyond the actor’s choice until
the stimulus is identified with high accuracy.

In tasks in which the stimulus cannot be observed after choice, a second
approach can be used in which additional exploration is introduced at the
time of the action decision. This approach is inspired by the findings of Daw,
O’Doherty, Dayan, Seymour, and Dolan (2006) that certain cortical areas
(frontopolar cortex and intraparietal sulcus) are active only on explorative
trials. We introduced the exploration in the following way. After the decision
threshold is reached, there is a fixed probability p that the actor chooses the
winning action and a probability 1 – p for choosing the alternative. In the
simulations, this p is set to 0.85, with the other parameters kept the same
as in the simulation of Figures 8a to 8c. Figures 9a and 9b show that all
the weights converge to the desired values as a result of identifying the
stimulus on most trials, while still occasionally choosing actions other than
the optimal. Figure 9c shows that the value estimation for each stimulus
converges to the correct region for both the single simulations and the
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Figure 9: Striatal weights learning in the integrated model during the biased
reward task (r1,1 = 2, r2,2 = 1, r1,2 = r2,1 = 0). The convergence of the striatal
weights for the actions chosen with the decision threshold at 0.4 but with added
exploration, in the context of the stimulus with the higher reward (a) and the
lower reward (b). (c) The estimated reward values. In all panels, the dashed lines
represent the correct responses, the solid lines represent the incorrect responses,
and the dotted lines represent single simulations.

averages, which suggests that the critic makes a reasonable estimation of
the expected reward, also in individual simulations.

The strategy of modifying the decision threshold has some intuitive
justification in that it seems reasonable to be more careful with decisions if
the reward scheme is unknown. This strategy works by avoiding mistakes,
but if the difficulty of the perceptual choice is increased to the level for
which mistakes cannot be avoided, the weights will fluctuate around the
boundaries at 0 and 1, and the average weights will never converge.

A third approach, offering a possible solution to the above problem, is
to assume that the weight parameters wi,u are not restricted to the range
between 0 and 1, but that the information transmitted through them is. In
particular, this model assumes that the information transmitted through
the synapse is equal to wi,u × xu if wi,u ∈ [0, 1], is equal to 0 if wi,u < 0 and
equal to xu if wi,u > 1.

When simulating this, we put an additional boundary on the weights so
that they cannot exceed −1 and 2 (recall that the numbers are arbitrary) and
run the simulation with the same parameters as in Figure 9 except that the
decision threshold is 0.6 as in Figure 7.

As Figure 10 shows, the weights converge to the required values. The
less rewarded correct action, w2,2, is slow in its convergence (and hence the
simulation is extended to 250 trials), though it still converges.

5 Discussion

In this article, we argue that the time is ripe for an integration of RL and
optimal DM theories. As first steps toward it, we have shown that in tasks
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Figure 10: Striatal weights learning in the integrated model with double bound-
aries during the biased reward task (r1,1 = 2, r2,2 = 1, r1,2 = r2,1 = 0). The con-
vergence of the striatal weights for the actions chosen in the context of the
stimulus with the higher reward (a) and the lower reward (b). The dashed lines
represent the correct responses, the solid lines represent the incorrect responses,
and dotted lines represent single simulations. (c) The estimated rewards
values.

in which a stimulus response mapping has been learned using RL, the
cortico-basal-ganglia network can approximate optimal DM. Furthermore,
we have described the conditions that cortico-striatal weights encoding
stimulus-response mappings need to satisfy in order to allow optimal DM,
and we developed a modified actor-critic model for learning these weights.
In this section, we discuss predictions of the model and the directions in
which the integration of RL and optimal DM theories may be developed.

5.1 Predictions of the Model. The proposed integrated model makes
several predictions that could be tested in behavioral and neurophysiolog-
ical data. Figures 7d and 7e illustrate a predicted pattern of behavioral data
in the biased reward task. Namely, on initial trials, reaction times and error
rates should on average be lower for the more rewarded stimulus (due to
larger changes in its corresponding weights), but these differences across
stimuli should be reduced as the training progresses (as the striatal weights
approach the values given in equation 3.3).

In our simulations, the decision times were identical for both stimuli after
learning (see Figure 7d), but it is important to note that we did not simulate
learning of optimal initial values of the integrators. Contrary to this simula-
tion, it has been observed that human participants make faster responses to
more rewarded stimuli in highly practiced tasks, but these faster responses
may arise due to the increases in initial values of integrators (Simen, Buck,
Hu, Holmes, & Cohen, 2009). Consequently, our model predicts that the
decision times should be equal for more and less rewarded stimuli once the
weights have converged (as in Figure 7d) in patients who do not modify
the initial values of integrators (e.g., in patients with orbitofrontal damage
who are impaired in estimating reward magnitudes). In such patients, the
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relative response times for different stimuli are most likely to depend only
on striatal weights, as in our simulations.

The model’s predictions on striatal weights and initial values of the in-
tegrators can also be tested by employing mathematical models of decision
making such as LATER (Carpenter & Williams, 1995) or a diffusion model
(Ratcliff, 1978; Vandekerckhove & Tuerlinckx, 2007). These models allow es-
timating the rate of evidence accumulation, which according to our model
should depend on striatal weights, and initial values of integrators. Our
model predicts that in the biased reward task, the estimated rates of evi-
dence accumulation for the two stimuli should differ early in the training,
but should become equal after learning. Our model also predicts that after
learning, the estimated initial starting point of the integrator corresponding
to the more rewarded action should be higher than for the starting point
estimated for the other integrator.

During learning in the model, the cortical integrators receive input from
sensory neurons via striatum, output nuclei, and thalamus, while in a highly
practiced task, the integrators receive the input directly from sensory neu-
rons (see section 3.5). Thus, the model predicts that the neural integrators
should start to increase their activity earlier after stimulus onset in highly
practiced tasks than during learning. Law and Gold (2008) have investi-
gated the activity of LIP neurons while the monkey learned the moving
dots tasks. Although their published data do not allow proper statistical
verification of this prediction, they seem to be consistent with it (e.g., the
black curve in right panel of their Figure 4a, corresponding to a high level
of practice, starts to depart from baseline 25 ms to 50 ms earlier than in
the middle panel of Figure 4a, corresponding to an intermediate level of
practice). The model also predicts that microstimulations of MT neurons
should affect LIP activity with a longer latency during learning than they
do in highly practiced tasks (Hanks, Ditterich, & Shadlen, 2006).

5.2 Combining Uncertainties in RL and DM. When considering how
to integrate RL and DM theories, it is pivotal to consider how the uncertain-
ties related to each theory must combine if the resulting behavior is to be
optimal. As mentioned at the beginning of the article, the main uncertain-
ties concerned by the RL and DM models are those in stimulus-response
mapping and stimulus-identity, respectively.6

6There are also other uncertainties in RL. In many RL tasks, the rewards are assigned
probabilistically, for example, selecting the same action for the same stimulus may result
in a reward on 75% randomly chosen trials. This introduces an uncertainty, to which Yu
and Dayan (2005) refer as the expected uncertainty, because a subject can learn over trials
to expect the probabilistic nature of rewards. Daw, Niv, and Dayan (2005) propose another
type of uncertainty, which is produced by a high-level model of the task in the prefrontal
cortex. For simplicity, we do not consider these uncertainties further.
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The stimulus-response uncertainty, traditionally associated with RL
models, influences decision times, traditionally associated with DM models.
Pasupathy and Miller (2005) reported longer reaction times on trials with
higher stimulus-response uncertainty (trials following a change in stimu-
lus response mapping). This suggests that learning and decision processes
interact while dealing with the uncertainties.

When attempting to improve performance, a subject would have to de-
crease the uncertainties; however, there is a fundamental difference between
the ways these uncertainties can be decreased. The stimulus-response un-
certainty can be reduced by reinforcement learning over trials, while the
stimulus-identity uncertainty can be lessened by longer observation times
within a trial.7

To optimally reduce these two uncertainties, one needs to optimally
choose the parameter controlling the speed-accuracy trade-off (see section
2.4). The above observations of Pasupathy and Miller (2005) might indicate
that in more uncertain circumstances, subjects want to be more certain of
the stimulus before making an action. This strategy may be beneficial. In
the presence of stimulus-response uncertainty, correct identifications of the
stimuli increase the probability that the stimulus-response mapping will be
learned correctly. Thus, one of the important directions in integrating RL
and DM models will be the identification of an optimal value of threshold
parameter controlling the speed-accuracy trade-offs that will allow maxi-
mization of reward rate and how this value can be learned (Simen, Cohen,
& Holmes, 2006).

5.3 Related Work. Work on combining the uncertainty of RL with stim-
ulus uncertainty has been also done in the domain of robot control. Kael-
bling, Littman, and Cassandra (1998) formalized the stimulus uncertainty in
a framework of partially observable Markov decision processes (POMDPs),
which assumes that an agent is not fully certain of its state (e.g., position
in the environment), but instead perceives observations that depend on the
agent’s state and action. In this framework, if an agent is very uncertain of
its state, in order to maximize the long-term reward, it may be beneficial to
choose actions that decrease its state uncertainty (e.g., to observe). In fact,
their framework is so general that it can describe the task we consider in
section 3.2: in each time point during the stimulus presentation, the agent
would be choosing from left saccade, right saccade, and continuation of
observation (which would be described as a third action).

The aim of Kaelbling et al. (1998) was to develop an efficient algorithm
that could run on a robot’s computer and find the optimal policy for any

7It is worth noting that even in experiments in which subjects are told the underlying
reward probabilities (and hence, in theory, eliminating stimulus-response uncertainties),
feedback over multiple trials is needed for the behavior to fully reflect the reward proba-
bilities (Jessup, Bishara, & Busemeyer, 2008).
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POMDP, while we investigate how simple learning problems can be solved
in the known anatomy of cortico-basal-ganglia circuits. These different per-
spectives led to differences in our solutions, and we discuss three of them.
First, although their algorithm is very elegant, it is so complex that it is
difficult to imagine how it could be implemented in neural circuits. Second,
the algorithm assumes that the agent fully knows the model of the world
(e.g., set of states, transition between them due to actions) and computes
the optimal policy “offline” on the basis of the model, while we assume that
the agent learns by interacting with the environment (as it is the case for
biological organisms). Third, in their framework, observation is treated as
any other action, while we treat it in a special way because motor actions
produce very different neural responses in the cortico-basal-ganglia circuit
than continuation of observation.

More recently, Dayan and Daw (2008) developed an elegant probabilistic
framework in which both RL and DM can be described. In this framework,
a subject estimates the state of the environment on the basis of external
cues and can either execute an action or continue observation. Dayan and
Daw (2008) discussed neural implementation of the computations in their
framework, but did not explicitly map them on the cortico-basal-ganglia
circuit.

Law and Gold (2009) recently published a very interesting computational
model describing decision making and learning in the moving dots task.
In their model, LIP integrates sensory input from MT during the decision
process, and after the feedback, the weights between MT and LIP neurons
are modified proportionally to the reward prediction error. Although Law
and Gold (2009) modify in their model the weights between MT and LIP,
they write “Our model is not informative about where in the brain the
actual changes occur. Rather, the model establishes principles governing
how functional (that is, direct or indirect) connectivity . . . is modified by
experience” (p. 661). We feel that our model describes how first indirect
and then direct connections between sensory neurons and integrators can
be formed in accordance with the principles in their model.

5.4 Further Directions. There are several directions in which a theory
integrating RL and optimal DM can be developed:

� So far we have focused on learning from rewards, but it has been
proposed that learning from punishments involves a separate pop-
ulation of striatal neurons that project to GP (Frank et al., 2004). It
would be interesting to investigate if the cortico-basal-ganglia circuit
can simultaneously support learning from punishments and optimal
DM.

� In recent work, Dimperio, Jessup, and Busemeyer (2010) showed that
in nonperceptual DM, the different behavior seen with and without
feedback can be captured by a model combining decision field theory
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and RL. For a full understanding of choices in humans, the common
aspects of this and our model should be investigated.

� The convergence proof in section 3.3 assumed that rewards are deter-
ministic, and it would be interesting to also consider tasks in which
rewards are delivered stochastically (with means defined by a payoff
matrix).

� It would also be interesting to investigate how the optimal value of
the learning rate η in RL models depends on stimulus uncertainty.

� So far in this article, dopamine was discussed only in the context of
RL, but it also plays an important role during DM, and two interesting
theories on this role have been proposed (Gurney, Humphries, Wood,
Prescott, & Redgrave, 2004; McClure, Daw, & Montague, 2003). It
would be interesting to analyze how they relate to optimal DM.

Appendix

Here we show that when the best action is chosen in the modified actor-critic
model of section 3.3, term δ does not converge to zero but can be bounded
from below by a positive constant that does not decrease over iterations.
This condition is necessary to guarantee that wbest ,u will reach 1, because if
δ > 0 but δ → 0, it would be still possible that wbest ,u would increase and
converge to a value lower than 1 (David Leslie, personal communication,
August 2007).

Let us note that the expected rewards for stimuli learned by the critic
converge to

vu →
∑

i

Piri,u. (A.1)

We now assume that vu is equal to the value given in equation A.1 and
compute the lower bound on δ after choosing the best action for stimulus u:

δ = rbest,u − vu = rbest,u −
∑

i

Piri,u =

= rbest,u(1 − Pbest) −
∑

i �=best

Piri,u.
(A.2)

Let r2nd,u denote the reward for selecting the second-best action for
stimulus u, so by definition, r2nd,u ≥ ri ,u for i �= best, hence:

δ ≥ rbest,u(1 − Pbest) −
∑

i �=best

Pir2nd,u. (A.3)
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Now we use the fact that Pi sum to 1, so condition A.3 is equivalent to

δ ≥ (rbest,u − r2nd,u)(1 − Pbest). (A.4)

The first term in brackets is strictly positive if rbest ,u > r2nd,u . The second
term in brackets is equal to e, which was assumed to be positive and constant
in section 3.3.
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