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Summary

Voluntary movement is accompanied by changes in the

degree towhichneurons in thebrainsynchronize theiractivity
within discrete frequency ranges. Two patterns ofmovement-

related oscillatory activity stand out in human cortical motor
areas. Activity in the beta frequency (15–30 Hz) band is prom-

inent during tonic contractions but is attenuated prior to and
during voluntary movement [1]. Without such attenuation,

movement may be slowed, leading to the suggestion that
beta activity promotes postural and tonic contraction, pos-

sibly at a cost to the generation of new movements [2, 3]. In
contrast, activity in the gamma (60–90 Hz) band increases

during movement [4]. The direction of change suggests that

gamma activity might facilitate motor processing. In corre-
spondence with this, increased frontal gamma activity is

related with reduced reaction times [5]. Yet the possibility
remains that these functional correlations reflect an epiphe-

nomenal rather than causal relationship. Here we provide
strong evidence that oscillatory activities at the cortical level

are mechanistically involved in determining motor behavior
and can even improve performance. By driving cortical oscil-

lations using noninvasive electrical stimulation, we show
opposing effects at beta and gamma frequencies and interac-

tions with motor task that reveal the potential quantitative
importance of oscillations in motor behavior.
Results

To demonstrate that oscillatory cortical activities can modify
motor behavior, we used transcranial alternating current stim-
ulation (TACS) to entrain oscillatory activity in the cortex with
lowamplitudecurrents at specified frequencies in a completely
noninvasive manner [3]. Such stimulation has been demon-
strated to increase oscillatory activity in the brain at the
frequency of stimulation [6]. Thus, we were able to investi-
gate how such stimulation modulated motor performance in
a go/no-go paradigm, which contrasts two very different
cue-determined tasks, action and motor inhibition. Eighteen
healthy subjects who were unable to detect periods of active
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stimulation were asked to hold a grip force sensor (MIE
Medical Research, UK) with their right hand while seated and
attending to a go/no-go task presented on a computer screen
in front of them (Figure 1). A precue was followed immediately
by either a green square (go signal) or a red square (no-go
signal), randomly selected with a 2:1 ratio of go to no-go
cues. Subjects were instructed to squeeze the force sensor
as hard and fast as they could in response to the go cue and
refrain from responding to the no-go cue. Stimulation was
randomly applied in 50% of trials.

Stimulation at 20 and 70 Hz Has Opposing Effects

in Go Trials
There was no change in reaction time or peak force during
either 20 or 70 Hz stimulation (see Table S1 available online).
However, stimulation at 20 Hz reduced the initial rate of force
development by 1.89% 6 0.74% compared to no stimulation
(t[17] = 22.541, p = 0.0211, unpaired t test; drop from 1,036 6
101 N/s [SEM unless stated otherwise] to 1,024 6 103 N/s,
t[17] = 1.781, p = 0.1057; Figures 2A, 2E, and 2G) and led to
a reduction in peak force rate of 2.56% 6 0.87% (t[17] =
22.934, p = 0.0092; drop from 1,919 6 176 N/s to 1,883 6
179 N/s, t[17] = 3.414, p = 0.0033; Figures 2B, 2F, and 2G).
Gamma stimulation had the opposite effect. The initial

rate of force development increased by 5.37% 6 1.3%
(t[17] = 3.92, p = 0.0011; rise from 996 6 105 N/s to 1,043 6
109 N/s, t[17] = 24.95, p = 0.0001; Figures 2C, 2E, and 2G).
Peak force rate increased by 2.08% 6 0.82% relative to
no stimulation (t[17] = 2.537, p = 0.0212; rise from 1,806 6
171 N/s to 1,837 6 170 N/s, t[17] = 22.32, p = 0.0344; Figures
2D, 2F, and 2G).

Effects of 20 Hz StimulationWere Dramatically Increased in

No-Go Trials
Our paradigm elicited contrasting intentions: action on go
trials or motor inhibition on no-go trials. During no-go trials,
false responses provided a behavioral measure of perfor-
mance in which motor inhibition was only partially successful.
Such errors of commission were absent in four out of the 18
subjects and in the remaining subjects occurred in an average
of 45%of trials (Table S2). In these subjects, peak force in error
trials was far smaller than in go trials, confirming that motor
inhibition was present, but not entirely successful during these
trials (40.0 6 9.9 N versus 212.0 6 11.7 N, p < 0.001, paired
t test).
Beta stimulation led to a dramatic 34.5% 6 10.7% drop in

the peak rate of force development in error trials relative to
no stimulation (t[13] = 23.215, p = 0.0068; from 607 6 135 N/s
to 413 6 127 N/s, t[13] = 4.31, p = 0.00084; Figure 3C). A com-
parable 35.7% 6 10.2% decrease in peak force was seen
(t[13] = 23.49, p = 0.004; from 462 6 109 N to 316 6 104 N,
t[13] = 24.45, p = 0.00053; Figures 3A and 3C). The effects of
gamma stimulation were more variable and showed no signif-
icant difference in either peak force (32.2% 6 31.2%, t[13] =
1.033, p = 0.3204), or peak rate of force generation (14.8% 6
37.2%, t[13] = 0.3891, p = 0.6971; Figure S1). This variability
was mainly due to three results from two subjects who had
percent increases more than four times the standard error
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Figure 1. Schematic of Paradigm Used for Go/No-Go Task

A fixation cross is presented that triggers the onset of sinusoidal stimulation shown below. After 3 s, a square white precue was presented followed quickly

(250–750ms, randomized) by either a square green go cue or red no-go cue, which lasted 250ms. Subjectswere instructed to squeeze as quickly and as hard

as they could in response to the go cue and withhold their response on no-go cues. Stimulation had a 0.5 s ramp up and down and lasted for a total of 5 s,

which meant that it continued throughout the behavioral response and faded away shortly thereafter. There was then a 6 s delay between the response cue

and subsequent fixation cross for the next trial, during which the subject was at rest.
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from the mean during gamma stimulation. However, the effect
of gamma stimulation remained insignificant even when these
results were eliminated (Figure 3C; Table S3).

Despite Different Effect Sizes, Responses to 20 Hz

Stimulation Are Correlated in Go and No-Go Trials
The impairment of force generation in both go and erroneous
no-go trials with 20 Hz stimulation raised the question: are
these effects related? In line with this, there was a significant
correlation between percent change of peak rate of force
generation in go trials and no-go trials during 20 Hz stimula-
tion, (r = 0.728, p = 0.0032, Figure 4) with no such correlation
for 70 Hz (r = 0.270, p = 0.35), suggesting a relationship
between the mechanisms of force rate inhibition.

Discussion

There is considerable evidence that oscillatory activity in the
brain is modulated in a task-specific manner [7–10]. However,
whether synchronized oscillations arise as an epiphenomenal
product of brain physiology, or are causal to our behavior,
remains an open question. The frequency-dependent bidi-
rectional influence of cortical entrainment on motor control
shown here, and its quantitative dependence on the motor
task triggered by the imperative cue, lend strong support to
the possibility that, at least in the motor domain, synchronized
oscillations are fundamental to brain function.

We have previously demonstrated that TACS at similar
intensities does drive motor cortical oscillations as evidenced
by changes in corticomuscular coherence [3], but could it
be that changes in cortical excitability also occur and actu-
ally underscore the behavioral effects? This seems unlikely
because the tonic grip force before the warning cue remained
unchanged during stimulation. In addition, TACS at 80 Hz has
no impact on cortical excitability after as long as 10 min of
stimulation at 1,000 mA [11]. TACS at 20 Hz can, following
90 s of stimulation, selectively increase motor cortical excit-
ability at rest [12], which is difficult to reconcile with the reduc-
tion in the rate of force generation shown here. Perhaps the
effects on behavior are independent and the excitability
changes require longer periods of stimulation. Alternatively,
and as suggested by the authors of the excitability study,
entrainment-induced excitability of a population of neurons
at beta frequency may come at the expense of selective moto-
neuronal recruitment, thereby impairing performance [12].
Could stimulation have brought nonspecific attentional pro-
cesses to bear? We were careful to keep stimulation below
perceptual threshold and, in line with this, reaction time was
unaffected by stimulation. Moreover, any shift in attention
due to subliminal scalp sensation or phosphenes could not
readily explain the opposite effects of stimulation at different
frequencies.
We elected to entrain motor cortical function at two

specific frequencies so as to test the hypothesized contrast-
ing roles of oscillatory activities in the ‘‘antikinetic’’ beta and
‘‘prokinetic’’ gamma bands. We chose these particular fre-
quencies because oscillatory activity in the motor cortex
during movement is commonly centered around 20 Hz [7]
and 70 Hz [4]. Beta activity in the motor system has been
considered to be antikinetic in so far as it is associated
with slower voluntary movements both in health [2] and
disease [13]. Conversely, gamma activity has been suggested
to be prokinetic given that it is increased in the basal ganglia-
cortical motor loop during voluntary movement [14]. Our ex-
perimental manipulations support this dissociation, albeit
a convenient but gross simplification of the behavioral rele-
vance of oscillations in the corticobasal ganglia system.
In particular, it must be stressed that both the beta and,
especially, the gamma band are very wide and have the
potential to encompass oscillatory activities with different
functional roles, according to their precise spatiospectral
characteristics [8].



Figure 2. Effect of Stimulation on Go Trials

(A–D) In (A) and (B), stimulation is applied at 20 Hz and in (C) and (D) at 70 Hz.

Black traces show no-stimulation trials and red traces stimulation trials.

Traces are grand averages of all subjects’ force rates aligned to the point

of first development of 5% peak force rate (A and C) or peak rate of force

generation (B and D). Vertical gray bars demonstrate areas of significant

difference between stimulation and no stimulation (serial two-tailed paired

t tests, p < 0.05).

(E–G) The mean differences with confidence intervals of 62 SEM between

stimulation and no-stimulation conditions for 20 Hz (blue) and 70 Hz (red),

aligned as above. Vertical lines at time 0 represent the point of first

Figure 3. Effect of Stimulation on No-Go Trials

Grand averages for no-go trials aligned to peak force are displayed for 20 Hz

(A) and 70Hz (B), with the gray bar showing an extended period of significant

suppression for 20 Hz but not 70 Hz. Individual percent changes are shown

in (C) for 20 Hz (blue) and 70 Hz (red) for peak force and peak rate of force

generation along with means 62 SEM (displayed with two outliers not

shown fromgammapeak force, and one fromgammapeak velocity. Outliers

are shown in Figure S1). See also Figure S1 for example of individual traces.
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One of the remarkable observations made here is the inter-
action between cortical entrainment at 20 Hz and the motor
task triggered by the imperative cue. Stimulation at 20 Hz
afforded a significant but modest slowing of force production
in the go task, akin to the results of Pogosyan et al. [3].
However, stimulation in no-go trials, where the triggeredmotor
task involved inhibition, led to amajor reduction in force gener-
ation during errors of commission in a performance-enhancing
direction. Nevertheless, the behavioral effects during go and
no-go trials with 20 Hz stimulation were related as indicated
by their correlation across subjects. Several studies have
now suggested that sensorimotor cortical areas may have
a natural resonance frequency of about 20 Hz [12, 15, 16].
The implication is that stimulation interacts with this rhythm
to drive oscillations [12, 16, 17] but that the degree to which
resonance phenomena are damped in the cortex is dynami-
cally determined by task demands. In our paradigm, the latter
are set by the imperative cue to either action or motor inhibi-
tion. Voluntary action was associated with a modest effect of
development of 5% peak force rate (E) and point of peak force rate (F). In

(G), percent changes for each subject are shown for both initial rate and

peak rate, for 20 Hz (blue) and 70 Hz (red) stimulation. Adjacent to individual

changes are mean changes with62 SEM. See also Figure S1 for example of

individual traces.



Figure 4. Correlation and 95%Confidence Intervals betweenGo andNo-Go

Trials with 20 Hz Stimulation

Percent change in peak force rate is significantly correlated between go and

no-go trials, suggesting a common inhibitory effect of 20 Hz stimulation

(r = 0.728, p = 0.0032; n = 14 as errors of commission were absent in

no-go trials in four of the 18 subjects).
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20 Hz stimulation and, as previously noted, is well established
to be preceded and accompanied by an attenuation of sponta-
neous beta oscillations in line with increased damping of
cortical resonance in the beta band. In contrast, motor inhibi-
tion was associated with a pronounced effect of 20 Hz stimu-
lation and is known to be preceded and accompanied by an
increase in spontaneous beta oscillations in no-go trials at
cortical [18] and subcortical [19] levels.

The performance enhancement was also seen in go trials,
but only during stimulation with 70 Hz TACS. Such stimulation,
in contrast to 20 Hz TACS, improved the rate of force genera-
tion, particularly early in the grip, effectively raising the
subjects’ mean maximal voluntary output. Although TACS in
the gamma band has been shown to influence sensory func-
tion [20, 21], we show for the first time that motor behavior
can be improved by imposing synchronized oscillatory activity
upon motor cortical regions. The improvement in the rate of
force generation was significant but relatively modest in size,
perhaps because of a ceiling effect whereby performance
could not be improved much more. Nevertheless, in conjunc-
tion with the results of 20 Hz stimulation, the findings provide
proof of principle for the anti/pro-kinetic model of beta and
gamma oscillations. In addition, the results with 70 Hz stimula-
tion provide further evidence for a dynamic change in cortical
susceptibility to oscillatory driving according to motor task.
Improvements in force generation were only seen during go
trials, i.e., when action was intended and spontaneous gamma
activity is known to increase [4]. In contrast, 70 Hz TACS was
ineffective during errors of commission following no-go cues,
presumably a consequence of the reconfiguration of cortical
resonance properties during motor inhibition. The basal gan-
glia are one system likely to regulate cortical damping and
resonance [14].

Our observations are important in providing interventional
evidence that oscillatory activity of the brain is causally linked
to aspects of motor behavior but also in suggesting more
targeted approaches to interventional treatments in diseases
dominated by insufficient or excessive movement. In partic-
ular, the prominent effect of 20 Hz TACS in promoting the
inhibition of unintended movements in no-go trials raises the
possibility that similar stimulation of the cortex may be
effective in suppressing unwanted or excessive output of the
motor system, such as tics or dyskinesias.

Experimental Procedures

The Oxfordshire Research Ethics Committee B approved the study, and all

subjects gave informed written consent. Nineteen healthy subjects were re-

cruited. The paradigm consisted of the presentation of a fixation cross

which lasted 3 s, followed by a precue (Figure 1). The precue was displayed

for between 250 and 750 ms and was followed immediately by either a go or

a no-go signal lasting 250 ms, randomly selected with a 2:1 ratio. This ratio

was chosen so as to increase the possibility of errors on no-go trials due to

a heightened expectation of go cues. Sessions consisted of four blocks,

each with 42 trials. Subjects were reminded before each block to remain

vigilant and respond as quickly as possible to go cues. Stimulation was

randomly applied in 50% of trials and ramped up over 0.5 s simultaneously

with the presentation of the fixation cross. Stimulation was on for 3 s before

the precue, and it lasted a total of 5 s before ramping down over 0.5 s.

Stimulation was delivered using a bipolar current stimulator (DC-Stimulator

Plus, NeuroConn, Ilmenau, Germany) via sponge electrodes soaked in

saline. We placed the target electrode (area 53 7 cm) on the scalp overlying

the hand area of the left motor cortex, as identified by single monophasic

pulses of Transcranial Magnetic Stimulation (MagStim 200, Whitland,

Wales, UK), and the reference electrode (5 3 10 cm) on the ipsilateral

shoulder. Subjects came for two separate sessions in which either 20 or

70 Hz stimulation was delivered. Sessions were separated by approximately

7 days and the order of 20 and 70 Hz stimulation was counterbalanced.

Analysis

For go trials, we determined response onset by thresholding force

responses at 2% of maximum force output on a trial-by-trial basis. We

aligned trials according to this response onset within subjects, and the

thresholding latency was used to determine reaction time, with the excep-

tion that any responses made within 100 ms of target presentation were

rejected. Any go-trials in which no response was made were also rejected.

We then differentiated the force response to obtain rate of force, with trials

where peak rate was outside 2 SD of the mean rejected. Collectively, these

rejection criteria resulted in the exclusion of less than 10% of trials in any

condition (Table S1). Moreover, there was no significant difference in the

number of trials eliminated across conditions (Table S1). To determine the

initial rate of force development, we realigned individual force rate averages

across subjects according to 5% of peak force rate. To determine peak

force and the peak rate of force development, we aligned force and differen-

tial force traces to peak values (see Figure S2 for example of individual aver-

ages during no stimulation). Grand averages were then constructed about

both initial rate and peak rate.

Supplemental Information

Supplemental Information includes two figures, five tables, Supplemental

Analysis,SupplementalResults, andSupplemental ExperimentalProcedures

and can be found with this article online at doi:10.1016/j.cub.2012.01.024.
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