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This paper presents a biologically plausible mechanism of back-propagating network output error to previous
layers of processing in a particular multi-layer neural network. This mechanism is used in a network that is
designed to mimic familiarity discrimination as performed by the perirhinal cortex of the temporal lobe. In the
algorithm, the error of the network during an initial classification period regulates the frequency of neuronal
activity in a succeeding memorising period via an inhibitory circuit, such that the frequency in this memorising
period is proportional to the error. Synaptic weight modifications are made according to activity-dependent
Hebbian rules, such as may be used in the brain. The magnitude of the modification depends on the frequency
of the activity. Hence, the magnitude of weight modification is proportional to the network error.

1 Introduction
In most training algorithms for multi-layer neural networks, weights are optimised according to the gradient of error,
where the errors obtained at the output layer influence the modification of all the weights in the network. Although
many algorithms for multi-layer network training have been proposed (e.g. [1, 13, 7]), there has been no biologically
plausible explanation offered for how the error may be propagated back to previous layers of processing.

Much evidence indicates that discrimination of the relative familiarity of stimuli is dependent on the part of the
temporal lobe – the perirhinal cortex [6, 10, 11]. In this area of the brain, a proportion of neurons respond strongly to
the sight of novel objects but respond only weakly or briefly when these objects are seen again [15] (see Figure 1).
This paper describes a biologically plausible method of error back-propagation, that has been implemented in a
network performing familiarity discrimination designed to mimic processing in the perirhinal cortex. This method,
although specific to this network, maybe generalisable to other models.

In [5], we present the model of familiarity discrimination in the perirhinal cortex, which is consistent with many
experimental observations. Here, an extension of this model is described, which allows more precise weight
modifications and results in improved network performance. The proposed algorithm utilises the property of
synaptic plasticity in the brain, i.e., that a higher intensity of activity is more likely to produce a higher magnitude of
synaptic weight modification [3]. The error of the network during the initial classification period regulates the
frequency of neuronal activity in the succeeding memorising period via an inhibitory circuit. This mechanism causes
the magnitude of change of all synaptic weights in the network to be proportional to the network error. As the
information about the error is carried to synapses by the frequency of neuronal activity, the learning algorithm is
referred to as frequency-based error back-propagation, or FreqProp for short.

The paper starts with an overview of our model of the perirhinal cortex in Section 2. Then FreqProp is presented in
Section 3. Section 4 shows the results of simulations and Section 5 discusses the relationships between FreqProp and
other learning algorithms. A proof of convergence of the presented algorithm is given in the Appendix.
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Figure 2. Network architecture in the model of perirhinal cortex
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Figure 1. Response of perirhinal neurons to first and repeat
presentations of ten pictures recorded from a monkey’s brain [15]



2 Perirhinal network model
Our model of the perirhinal network is briefly described here. In this description, a simple binary model of neurons
is used. Full details are in [5].

The network operates in two phases. During a brief initial period (the familiarity discrimination period), the
discrimination of familiarity is achieved. This corresponds to the short interval in which the neurons may be active
for both novel and familiar stimuli (Figure 1). The subsequent, longer period (the memorising period) of high
frequency spike activity for a novel stimulus then produces differential modifications of synaptic weights, thereby
storing the occurrence of a novel stimulus. There is no high frequency activity for familiar stimuli (Figure 1), since
they are already stored in the network and there is therefore no need for weight modifications. During this
memorising period, after presentation of a novel stimulus, neurons respond with high frequency (Figure 1) and
alterations of synaptic weights occur according to a Hebbian learning rule. Hence, in the model, only the first
spike(s) in an action potential train is used for computation and the remaining spikes, through maintained high
frequency activity, produce weight modification.

The model has three layers (Figure 2). The first layer consists of N representation neurons, which provide inputs to
the familiarity discrimination network. The pattern of activity of the representation neurons is an internal
representation of a stimulus encoded as a sequence of N bits. The second layer consists of familiarity detection
neurons (FDNs): FDNs make individual, independent decisions about the familiarity of the stimulus. The values of
the FDNs’ weights result in more FDNs being active for familiar patterns than for novel ones during the initial
period of processing. Since any individual FDN may make a mistake, e.g., be active for a novel stimulus during this
initial period, a third layer of decision neurons is required to sample the activity of the population of FDNs. Decision
neurons receive inputs from the FDNs and are activated only when a majority of their inputs are active. Hence,
during the initial period they are active for familiar patterns and inactive for novel ones. These decision neurons
govern the subsequent activity of the network. After presentation of a familiar stimulus, the activated decision
neurons trigger the inhibitory neurons which prevent activity in the FDNs during the memorisation period. For novel
patterns, the decision neurons are inactive, hence the inhibition is not increased and thus the FDNs are active during
the memorisation period (see [5] for details). The network computes the following function:
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where yi denotes the activation of FDNi. In equation 1, the summing is done only over the activation of those FDNi

for which xi = 1. In the network, this is implemented by driving connections between representation neurons and
corresponding FDNs (denoted by double lines in Figure 2). The driving connections have high synaptic weights (not
changed during learning), which ensures that to activate a FDN, the corresponding representation neuron must also
be active [5]. The weights of the FDNs (denoted by wij) are initialised to 0 and then modified after each stimulus
presentation according to the Hebb rule of Equation 2. In Equation 2, δ is equal to 1 if the pattern was classified as
novel (FDNs are active during the memorising period) and to 0 if the pattern is familiar (FDNs are inactive).
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3 Frequency-based error back-propagation
The output of the network described in Section 2 returns only a binary decision (novel or familiar). However,
familiarity is a fuzzy concept, i.e., some objects seem more familiar than others [2]. This representation of the level
of confidence about familiarity may be implemented by introducing a number of decision neurons. The population
activity of these decision neurons should be proportional to the population activity of the FDNs in the familiarity
discrimination period. Such an effect may be achieved in many ways. For example, the decision neurons may be
stochastic, or they may have different thresholds or the connections between FDNs and decision neurons may be
sparse. The differences in population activity of decision neurons for different levels of confidence is illustrated by
the results of simulation in Figure 3, performed by a more realistic spike-response version of the network (see [5]).

This population coding of familiarity confidence level is also very useful from the point of view of network
performance. The less familiar a stimulus seems to be to the network, the stronger the modification of weights
should be, so that the stimulus will be classified as familiar during the next presentation. This principle is
implemented in the frequency-based error-back-propagation algorithm, or FreqProp.



In FreqProp, the error is taken as the difference between the confidence level that is required be achieved during the
next stimulus presentation, and the current confidence level. In particular, during the next presentation the network
should classify the stimulus as familiar, i.e., there should be maximum activity of the decision neurons. Hence, the
error is equal to the difference between the maximum and the actual population activity of the decision neurons.

In the perirhinal network, the decision neurons give inputs to inhibitory neurons, which in turn inhibit FDNs (see
Figure 2) and thus regulate the neuronal activity in the following memorising period. The lower the number of active
decision neurons (i.e., the higher the error), the lower the inhibition and hence the higher the neuronal activity (see
Figure 3 for sample simulation results). Since the magnitude of weight modification depends on the frequency of
activation (see [3]), higher error causes larger modification of FDNs’ weights.

In the network the firing frequency of the FDNs carries information about the value of the error. However, here for
simplicity this effect is not simulated explicitly. Instead, we use the term δ in Equation 2, which regulates the
magnitude of weight modification, as it can be made to be proportional to the error. To do this, we define the error in
terms of the Hopfield energy function, in the Hopfield network having the same weights as the FDNs. This is
adequate as familiarity discrimination in the Hopfield network [4] has properties similar to those of the perirhinal
network [5], and its mathematical analysis is much simpler. In the Hopfield net, familiarity discrimination is
performed not by the network itself but by an external observer calculating the Hopfield energy. The average value
of the energy for stored patterns is –N/2 (where N = number of neurons in the network), while for novel patterns it is
0 [4]. Therefore, by taking as a threshold the middle value –N/4, we can define a familiarity discrimination criterion,
namely, if E < –N/4, then the pattern is considered familiar, otherwise it is novel.

In FreqProp, we assume that the target value of the energy function corresponding to classification of a pattern as
familiar is –N/2 (which is the average value of the energy function for stored patterns [4]). The error term from
Equation 2 may be defined as:
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According to Equation 3, if a pattern was classified as familiar with high confidence (E(x) <-N/2), then δ is equal to
0 (no weight modification). The higher the level of confidence about the novelty of a pattern (i.e., the higher the
energy), the higher the value of δ. The error term δ is defined in such a way, that if the same pattern is presented just
after weight modification, the value, E’, of the energy function is given by:

a b c

Figure 3. Confidence level encoding in a population activity of decision neurons and its influence on the network activity during the subsequent
memorising period. The simulation was performed using a network consisting of 40 representation neurons, 40 FDNs and 3 decision neurons

with different thresholds. a) Presentation of a highly familiar pattern causes large activity of FDNs in the initial period, which result in the
activation of all the decision neurons (representing classification of the pattern as familiar with high confidence). The large activity of decision
neurons causes high level of inhibition in the network, which results in low activity during the following memorising period. b) A stimulus is
classified as novel with low confidence, which causes small activity during the memorising period. c) A stimulus is classified as novel with

high confidence, which results in strong activity during the memorising period.
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Since E’ is exactly –N/2, the pattern is correctly classified as familiar with high confidence. In this sense, the
FreqProp demonstrates single-trial learning. We refer to the algorithm described in Section 2 as the binary algorithm
to distinguish it from FreqProp. In the binary algorithm, δ is equal to 1 if E(x)>-N/2 and 0 otherwise. The binary
algorithm does not always have the single-trial learning property. For example, if the energy for a novel pattern is
equal to N/2 then after the weight modification with the binary algorithm, the energy for this pattern will be equal to
0 during its next presentation and the pattern will be classified as novel again.

Repeated presentations of training patterns usually increase the storage capacity of neural networks [12, 7]. Both
FreqProp and binary algorithms have analogous property: repeated presentations increase the number of patterns,
which may be classified as familiar. Furthermore, the algorithms are guaranteed to find the values of the weights,
resulting in the classification of all the patterns in the training set as familiar with high confidence, if such values of
weights exist (see Appendix).

There exists a small probability of classifying a novel pattern as familiar by the network. The patterns for which this
false recognition error may occur correspond to the spurious attractors in the Hopfield network (i.e., the patterns
having lower energy than the stored patterns), which exist even for a very small number of stored patterns [7].
Therefore FreqProp does not guarantee that novel patterns are classified correctly. It is not possible to guarantee this,
because false recognition patterns (corresponding to spurious attractors in the Hopfield net) always exist.

FreqProp converges much faster than the binary algorithm, because in FreqProp the absolute values of weights (|w|
in Appendix) are much smaller than in the case of the binary algorithm, where the absolute values of weights grow
rapidly. This results in lower probability of false recognition errors in the case of the FreqProp algorithm. The
experimental results described in Section 4 confirm these findings.

4 Results of simulation
The storage capacity for familiarity discrimination was compared for FreqProp and the binary algorithm. After
training, the classification of a pattern by the network was considered as correct when the corresponding energy
function was lower than –N/4 in case of a familiar pattern and higher than –N/4 in case of a novel pattern.

The storage capacity of the network was calculated after patterns had been presented different numbers of times, i.e.
after repeated presentations (iterations). For each number of iterations we calculated the storage capacity of the
network, i.e. the maximum number of patterns for which the familiarity classification error is lower than 1%. The
tests were performed for two types of data sets, namely, one consisting of stored patterns only and one consisting of
equal numbers of stored and novel patterns. The storage capacity is the average over many tests performed on 5000
patterns for each number of iterations. The results of simulations are shown in Figure 4.

Curves describing the capacity when only stored patterns are presented (filled dots in Figure 4) show that FreqProp
converges to the optimal solution much faster than the binary algorithm. This is especially clear when there have
been just a few iterations, for example after two iterations the capacity for FreqProp is three times higher than that of
the binary algorithm. Curves describing capacity when both stored and novel patterns are presented (empty dots in
Figure 4) show that the capacity of Freq-Prop does not depend on the number of iterations. In the case of the binary
algorithm the capacity decreases after many iterations due to the increase in the absolute values of the weights.
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Figure 4. Storage capacity of familiarity discrimination network
consisting of N = 50 FDNs for different numbers of training iterations.

Figure 5. Storage capacity of familiarity discrimination network
consisting of N = 50 FDNs for different values of discrimination

threshold and different number of training iterations. The empty dots
represents cases where the majority of errors made by network are
false recognitions, while the filled dots represent cases where the

non-recognition errors prevail.
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Curves for which the proportion of novel to familiar patterns is neither zero nor equal will lie between the curves
presented in Figure 4. In everyday life it might be expected that most patterns will be familiar (indeed often
experienced), the minority being novel. Accordingly, the analysis establishes that the capacity of the network is
likely to be closer to the upper curves in situations that parallel reality.

When there is more than one iteration, the only mistakes made by network are false recognition. Hence, for higher
numbers of iterations the capacity may be improved by decreasing, i.e. making more negative, the discrimination
threshold (which was equal to –N/4 in the above experiment). Figure 5 shows the storage capacity when both stored
and novel patterns are presented for different discrimination thresholds and different numbers of training iterations.
By decreasing the threshold, the capacity may be increased. The optimal value of the threshold depends on the
number of training iterations: the higher the number of iterations, the lower the value of the optimal threshold.

5 Discussion
FreqProp is related to the standard error back-propagation algorithm, where the magnitude of the weight
modification of hidden unit j is defined as [13]:
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i
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∆wjk depends on two groups of parameters. The first group are the parameters local to the neuron (i.e., input to the
neuron xk, membrane potential φj, derivative of the transition function f’  and learning rate η). The second group are
the parameters propagated from the next layers (i.e., the error terms in the next layer δi and the weights wij of the
forward connections of the neuron). The parameters propagated from the next layer are individual for each hidden
unit, because the weights of neurons in the next layer (wij) have different values.

The specific property of the perirhinal network is that all the weights of output units are equal (see Equation 1) and
not modified during learning. Hence, the error propagated back to the hidden unit is the same for each neuron and
therefore it can be encoded in one value, namely the frequency of activity in the memorising period. The
generalisability of this error correction algorithm to other networks is a subject for future work.

Other, non-gradient based algorithms for training multi-layer networks have been proposed, which do not require
error back-propagation and which use only locally accessible information for weight modification. For example, the
Alopex algorithm modifies the weights based on the correlation between the previous weight modification and the
change in error [14]. In regression by independent component analysis, the weights of hidden units are found by
unsupervised learning on both inputs and outputs [9]. Algorithms similar to FreqProp could be incorporated in the
implementation of the above algorithms in networks designed to model processing in the brain. For example, in the
Alopex algorithm the information about the error produced by the network must be delivered to each synapse, which
could be implemented in a way similar to FreqProp.

Appendix A Convergence proof
This Appendix contains the proof that the binary algorithm finds values of the weights resulting in the correct classification of patterns from the
training set if such values exist. The proof extends naturally to FreqProp. For simplicity the Hopfield energy function is used as the discrimination
criterion. The proof is analogous to the convergence proof of the perceptron rule [12].

Let us denote the i-th bit of stored pattern µ by ξi
µ and the weight between representation neuron j and FDNi after n-th weight correction by wij

(n).
Let us also define F = -2E, where E is value of the Hopfield energy, i.e.
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Hence, when F = N a pattern is classified as familiar with high confidence. The weights are modified according to Equation 2, which becomes:

if F < N, then modify weights: 
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Let J denote a set of weights resulting in the correct classification of all the patterns from the training set as familiar with high confidence, i.e.,
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The convergence theorem essentially states that after a finite number m of weight corrections, the algorithm finds the weights resulting in the
correct classification of all the training patterns if such weights exist, i.e.,
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Proof. In the proof, the weight matrices are sometimes treated as vectors created by the concatenation of matrices’ rows. Hence the “length” and
the “scalar product” of matrices are defined here as:
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Let us define G by:
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G = 1 only when J = λw, where λ is a non-zero constant. Let us denote N(n) = J ° w(n)  and D(n) = |J||w(n)|. Let us calculate the change in N(n) due to
the n-th weight correction.

∑ ∑=∆=∆
ji ji

iiijijij
n J

N
wJN

, ,

)( 1 µµξξ (A.8)

Since J are the weights resulting in the correct classification, from Equation A.3, ∆N(n) ≥ (1/N)N = 1. Since at the beginning all the weights are
initialised to zero (so N(0) = 0), then
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To calculate D(n), let us first estimate the change in |w(n)|2 due to the n-th weight correction.
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Since ξi
µ ∈ {-1, 1}, the second term in the right-hand side of Equation A.10 is equal to 1. Since the weight corrections are made only when a

pattern is incorrectly classified, then from A.1 and A.2 the first tem in Equation A.10 is smaller or equal to (2/N)N = 2. Therefore, ∆|w(n)|2 ≤ 3,
which implies that |w(n)|2 ≤ 3n, hence:

      nw n 3)( ≤ , and hence JnD n 3)( ≤ (A.11)

From Equations A.9 and A.11 we obtain:
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The sequence G(n) grows with the square root of n, which means that it is unbounded (its limit is infinite). However, from A.7 it is bounded by 1,
which means that, after a number of steps m, the process of weight corrections must finish (otherwise G would exceed 1). The process can finish
only if there is no more correction to be made, i.e., when all the patterns are classified correctly as familiar with high confidence. This proves,
that after a number of steps the learning algorithm finds the weights resulting in the correct classification, if such weights exist.
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