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Abstract

A key pathology in the development of Parkinson’s disease is the occurrence of persistent beta oscillations, which are correlated with
difficulty in movement initiation. We investigated the network model composed of the subthalamic nucleus (STN) and globus pallidus
(GP) developed by A. Nevado Holgado et al. [(2010) Journal of Neuroscience, 30, 12340–12352], who identified the conditions under
which this circuit could generate beta oscillations. Our work extended their analysis by deriving improved analytic stability conditions
for realistic values of the synaptic transmission delay between STN and GP neurons. The improved conditions were significantly
closer to the results of simulations for the range of synaptic transmission delays measured experimentally. Furthermore, our analysis
explained how changes in cortical and striatal input to the STN–GP network influenced oscillations generated by the circuit. As we
have identified when a system of mutually connected populations of excitatory and inhibitory neurons can generate oscillations, our
results may also find applications in the study of neural oscillations produced by assemblies of excitatory and inhibitory neurons in
other brain regions.

Introduction

Parkinson’s disease is the second most common neurodegenerative
disorder after Alzheimer’s disease (Lau & Breteler, 2006). It is
estimated that between 4.1 and 4.6million people in theworld’s 10most
populous nations are affected.Without intervention this number is set to
double to between 8.7 and 9.3 million by 2030 (Dorsey et al., 2007).

The most apparent symptoms of Parkinson’s disease include
slowness of movement (bradykinesia), tremor and muscle rigidity.
These symptoms are accompanied by the death of dopaminergic
neurons in the mid-brain substantia nigra pars compacta (Jankovic,
2008), which send strong projections throughout the basal ganglia.
The basal ganglia is critically involved in action selection (Redgrave
et al., 1999) and damage interrupts its ability to select appropriate
actions. In Parkinson’s disease, persistent beta oscillations (13–30 Hz)
have been observed in the basal ganglia circuits, in particular in the
subthalamic nucleus (STN) and globus pallidus (GP) (which is a rat
homologue of the GP external in primates) of 6-Hydroxydopamine-
lesioned rats (Mallet et al., 2008a,b). Furthermore, the development of
persistent beta oscillations is correlated with the severity of one of the
symptoms of Parkinson’s disease, namely, the patient’s inability to
successfully initiate movement (Brown, 2003; Chen et al., 2007; Ray
et al., 2008).

It is thought that oscillatory activity would be generated in the
STN–GP circuit, as experiments in vivo have observed beta oscilla-
tions in both the STN and GP nuclei, as well as in other basal ganglia

structures (Bevan et al., 2002; Boraud et al., 2005; Mallet et al.,
2008a,b). In addition, it was shown by Plenz & Kital (1999) in vitro
that the STN–GP circuit could produce delta band activity indepen-
dently. Further evidence supports excitatory–inhibitory architectures
being able to produce oscillations (Bevan et al., 2002). However, it
has not been shown conclusively that beta oscillations are generated in
the STN–GP circuit (Lang & Zadikoff, 2005).
Several computational models have provided insight into actions in

the basal ganglia in Parkinson’s disease (Gillies et al., 2002; Terman
et al., 2002; Rubin & Terman, 2004; Humphries et al., 2006; Leblois
et al., 2006; Frank et al., 2007; Kumar et al., 2011). The first model
of the basal ganglia showing beta oscillations was by van Albada et al.
(2009); however, in this model they originate in the cortico-thalamic
loops and then spread through the basal ganglia as the disease
progresses. The first model of the basal ganglia to show beta
oscillations originating in the STN–GP loop was due to Nevado
Holgado et al. (2010). This model, which included an inhibitory–
excitatory connection with time delays between the STN–GP nuclei,
was shown to support beta oscillations. Models with time delays
display enriched behaviour that would not otherwise occur in models
otherwise. In particular, time delays can often be a source of
oscillations and instability (Coombes & Laing, 2009). The model
reproduced an appreciable amount of physiological data and approx-
imate conditions were derived for the onset of oscillations. Neverthe-
less, the conditions of stability were quantitatively inaccurate, because
an essential parameter determining oscillation onset, the delay time
between neural populations, was assumed close to zero. By contrast,
experimental data suggest that the synaptic transmission delays
between the STN and GP are about 6 ms in rats and monkeys
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(Fujimoto & Kita, 1993; Kita et al., 2005). Thus, these delays are not
negligible in comparison to other parameters of the population model,
e.g. the time constant. [The time constant in a population model is a
parameter that describes how rapidly a population of neurons changes
its firing rate in response to input. Its value depends mostly on the
membrane time constants of individual neurons (Abbott & Dayan,
2001), and has also been proposed to depend on the time constants of
synaptic currents (Nevado Holgado et al., 2010).] In this article, we
show that there is an alternative approach that extends the validity
range of the conditions and, at the same time, is mathematically
sounder.
The main derivation of the conditions is provided in the Materials

and methods. The Results section is accessible to readers without an
extensive mathematical background.

Materials and methods

Description of the model

We begin with a review of the mathematical model described by
Nevado Holgado et al. (2010), which investigated the STN–GP circuit
shown in Fig. 1A. Here the STN neural population projects excitatory
glutamatergic axons to the GP, and the GP neural population projects
inhibitory GABAergic axons back to the STN as well as to other

neurons within the GP. The GP receives inhibitory input from the
striatum and the STN receives excitatory input from the cortex.
Using the equation for the mean firing-rate model described in

Abbott & Dayan (2001) and Vogels et al. (2005), the corresponding
equations describing this system are

sSS0ðtÞ ¼ FSð�wGSGðt � TGSÞ þ wCSCtxÞ � SðtÞ ð1Þ

sGG0ðtÞ¼ FGðwSGSðt�TSGÞ�wGGGðt�TGGÞ�wXGStrÞ�GðtÞ ð2Þ

where S(t) and G(t) are the firing rates of the STN and GP respectively,
G(t ) TGS), S(t ) TSG) and G(t ) TGG) are the delayed firing rates, sS
and sG are the time constants of the STN and GP populations (see
above) and w represents the various weights between neural popula-
tions. The subscripts indicate the population from which the signal
originates and where the signal is received. For instance, wGS

describes the strength of connection from the GP population to the
STN population, wSG gives the strength between the STN and GP
populations and wGG is the strength of the self-inhibitory connection
of the GP population. The weights wCS and wXG are the strength of
input connection from the cortex to STN and the striatum to GP,
respectively. FS and FG are the activation functions of the STN and
GP neural populations, which describe their firing rate as a function of
synaptic input.
The sigmoid activation functions FS(in) and FG(in), given by

Eqns 3 and 4, have been shown to approximate a population of
neurons with heterogeneous activation functions (Wilson & Cowan,
1972).

FSðinÞ ¼
MS

1þ ðMS�BS
BS
Þ expð�4in=MSÞ

ð3Þ

FGðinÞ ¼
MG

1þ ðMG�BG
BG
Þ expð�4in=MGÞ

ð4Þ

The constants MS and MG are the maximum firing rates of each
population, and BS and BG are the population firing rates in the
absence of input. The other two parameters needed to define a sigmoid
curve are the minimum firing rate, which is set to zero (as often seen in
experiments), and the slope, which is set to 1 for a simple
interpretation of synaptic weight units (Nevado Holgado et al.,
2010). These curves are shown in Fig. 1B.
The parameters summarized in Table 1 were available in the

literature (for details, see Nevado Holgado et al., 2010). However, the
synaptic weights were not available in the literature and therefore
Nevado Holgado et al. (2010) found the values for which the model
reproduced a wide range of experimental findings. The values of those

A

B

C

Fig. 1. (A) Schematic of the STN–GP model considered in this article. Each
rectangle denotes a neural population, arrows denote excitatory signals and
lines ending in circles represent inhibitory signals. Alongside these are the
symbols used to represent weights w and time delays T for each connection. (B)
Output from the activation functions, FS(in) and FG(in), given by Eqns 3 and 4.
Drawn tangent to the activation function curves are their derivatives at the fixed
points, F¢S* and F¢G*, corresponding in this case to the simulations shown in
Fig. 2. (C) Derivatives of the activation function from Panel B.

Table 1. The parameters and their values used in the model along with the
sources for this information

Parameter Value Source

T 6 ms Fujimoto & Kita (1993), Kita et al. (2005)
sS 6 ms Kita et al. (1983), Nakanishi et al. (1987),

Paz et al. (2005)
sG 14 ms Kita & Kitai (1991)
Ctx 27 spk ⁄ s Lebedev & Wise (2000)
Str 2 spk ⁄ s Schultz & Romo (1988)
MS 300 spk ⁄ s Hallworth et al. (2003)
BS 17 spk ⁄ s Hallworth et al. (2003)
MG 400 spk ⁄ s Kita et al. (2005), Kita (2007)
BG 75 spk ⁄ s Kita et al. (2004), Kita (2007)
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parameters for both the healthy and Parkinsonian state are summarized
in Table 2.

We show the behaviour of the model, corresponding to Eqns 1–4,
for the values of weights corresponding to the healthy and Parkinsonian
state in Fig. 2. Please note that, for the parameters corresponding to the
healthy state, the system converges to a constant firing rate (i.e. a fixed
point of the system), whereas for the parameter corresponding to the
Parkinsonian state it produces sustained oscillations.

Original stability analysis

This section will review the stability conditions as described in
Nevado Holgado et al. (2010) before providing details of our new
analysis. The authors made the following simplifying assumptions: (i)
the membrane time constants sS and sG were taken to have an average
value of s = 10 ms; (ii) the transmission delays for the separate neural
populations TSG, TGS and TGG were taken to be equal, denoted by the
single variable T; and (iii) the nonlinear activation functions were
replaced with linear functions. We shall refer to this simplified system
as the linear system described by Eqns 5 and 6.

sS0ðtÞ ¼ �wGSGðt � T Þ þ wCSCtx� SðtÞ ð5Þ

sG0ðtÞ ¼ wSGSðt � T Þ � wGGGðt � T Þ � wXGStr � GðtÞ ð6Þ

We could solve these equations by replacing the time delayed
variables with a Taylor series expansion around zero, leading to
Eqns 7 and 8. This simplification works well for small values of the
time delay. However, in general, it is not recommended (Mazanov &
Tognetti, 1974) because it is inaccurate for large delay values.

sS0ðtÞ ¼ wGSðGðtÞ � Dt � G0ðtÞÞ þ wCSCtx� SðtÞ ð7Þ

sG0ðtÞ ¼ wSGðSðtÞ � Dt � S0ðtÞÞ � wGGðGðtÞ
� Dt � G0ðtÞÞ þ wXGStr � GðtÞ

ð8Þ

Using parameters representing Parkinson’s disease, the linear
Eqns 7 and 8 produce divergent oscillations, whereas in the nonlinear
model the nondiverging oscillations correspond to a stable limit cycle.
This divergence can be remedied by imposing the realistic boundary
condition that firing rates cannot be negative (Nevado Holgado et al.,
2010). For oscillations to occur in the linear system, the fixed point
must be unstable and trajectories starting from its neighbourhood must
form spirals as opposed to a limit cycle. A boundary restricts the spiral
trajectory, thereby producing oscillations of constant amplitude. These
behaviours occur when Eqns 9 and 10 are satisfied. The third
condition, Eqn 11, is required to form a closed loop trajectory in the
phase plane.

wGSwSG
T
s

>1þ wGGð1�
T
s
Þ=2 ð9Þ

wSGwGS >
w2
GG

4
ð10Þ

wSGwCSCtx > wXGStr ð11Þ

New stability analysis

In this section, we find the stability of the system described by Eqns 5
and 6 for the case of arbitrary values of the delay, in the absence of
cortical or striatal input (as they do not change the stability conditions
for the linear system). Eqns 5 and 6 can be rewritten as Eqn 12, where
the matrices A and B are given by Eqns 13 and 14.

S0ðtÞ
G0ðtÞ

� �
þ A

Sðt � T Þ
Gðt � T Þ

� �
þ B

SðtÞ
GðtÞ

� �
¼ 0 ð12Þ

A ¼ 0 wGS
s�wSG

s
wGG

s

� �
ð13Þ

Table 2. The model parameter values for synaptic connection weights
estimated by Nevado Holgado et al. (2010) for both healthy and Parkinson’s
disease states

Parameter Healthy state Parkinson’s disease

wGS 1.12 10.7
wSG 19.0 20.0
wGG 6.60 12.3
wCS 2.42 9.2
wXG 15.1 139.4

A

B

Fig. 2. Numerical simulation of the nonlinear system, which shows the
bifurcation that occurs in firing rate between the healthy-type behaviour (A) and
the Parkinsonian-type behaviour (B). Estimated weight parameters for both the
healthy state and Parkinsonian state were obtained from Nevado Holgado et al.
(2010) (Table 2). The system tends towards the stable fixed points, S* and G*,
in healthy behaviour, and the system orbits around these fixed points producing
oscillations in Parkinsonian behaviour.
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B ¼
1
s 0
0 1

s

� �
ð14Þ

We solve Eqns 12–14 using Laplace transforms. This is equivalent
to mapping our equations from the time domain into the frequency
domain where the inputs and outputs become functions of complex
angular frequency. A useful property of the Laplace transform is that
the Laplace transform of f(t ) T) is given by F(s) multiplied by a
phase term e)Ts. This is known as the First Shifting Theorem and is
given by Eqn 15 for any arbitrary constant, T > 0.

Lff ðt � T Þg ¼ e�TSF ðSÞ ð15Þ

Taking the Laplace transform of Eqn 12 and using this result we get

� Sð0Þ
Gð0Þ

� �
þ s

SðsÞ
GðsÞ

� �
þ Ae�sT SðsÞ

GðsÞ

� �
þ B

SðsÞ
GðsÞ

� �
¼ 0 ð16Þ

Without loss of generality, we set
Sð0Þ
Gð0Þ

� �
¼ 0 and so

sI þ Ae�sT þ B ¼ 0 ð17Þ

Taking the determinant of both sides, we get the (transcendental)
characteristic equation for the eigenvalues s, given by

detðsI þ Ae�sT þ BÞ ¼ 0 ð18Þ

In the analysis of ordinary differential equations without delays, we
must find the location of a finite number of eigenvalues to determine
the stability boundaries of the system. If T = 0, then s, which satisfies
Eqn 18, would be the eigenvalues of the matrix A + B, and the sign of
the real part of s would determine the stability. Analogously here, any
s satisfying Eqn 18 is an eigenvalue of the delayed system. Delay
differential equations have an infinite number of eigenvalues,
introduced by the e)sT term. Therefore, the stability boundary of the
system is more easily determined by finding when the real part of the
eigenvalues changes from negative to positive, indicating the change
from stable to unstable. For this reason we substitute s = ik into
Eqn 18 and expand the exponential to give

�k2þ ikwGG cosðkT ÞþkwGG sinðkT Þþ2ik
s
þwGG cosðkT Þ

�wGGisinðkT Þþ 1
s2
þwSGwGS cosð2kT Þ� iwSGwGS sinð2kT Þ¼ 0

ð19Þ

Linear model without intrinsic globus pallidus connectivity

We first derive conditions for oscillations valid for arbitrary delay
values when there is no intrinsic GP connectivity. Therefore, we set
wGG = 0 in Eqn 19. We also set the membrane time constant s = 1,
which can be interpreted as a rescaling of time bT ¼ T

s . By taking real
and imaginary parts, we find

0 ¼ 1� k2 þ wSGwGS cosð2kbT Þ ð20Þ

0 ¼ 2k� wSGwGS sinð2kbT Þ ð21Þ

By squaring and adding Eqns 20 and 21, we obtain a quartic
equation in k. Two of the roots give k imaginary, contrary to our
assumption. Hence we find

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wGSwSG � 1

p
ð22Þ

We then substitute Eqn 22 back into Eqn 20 to give a final
expression linking the parameters we are interested in 2-
wgswsg+wsg*wgs*cos(2*T(with a hat)*sqrt(wgs*wsg-1)=0.
Finally, we can write an exact expression for the delay time bT for

any value of the product of the connection weights, wGSwSG

bT ¼ 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wGSwSG�1
p arccos 1� 2

wGSwSG

� �
ð24Þ

Linear model including intrinsic globus pallidus connectivity

We have shown that oscillatory behaviour can be generated with the
exclusion of wGG. However, it is more biologically realistic to include
it in our model of the basal ganglia. For this reason, the general
solution to Eqn 18 was sought, which would hold for larger time
delays. An analytic approach similar to the case wGG = 0 led to
cumbersome expressions. A more elegant and straightforward
approach to the general solution has been developed by Asl & Ulsoy
(2003) in connection with chattering problems in engineering. We will
show that this method can be applied to solve the general case of
wGG „ 0. For this method to work, our matrices A and B must
commute. However, as B is diagonal, this condition is satisfied. We
can rewrite the characteristic Eqn 17 as

sIesbT þ BesbT ¼ �A ð25Þ

As it is possible to show that

IesbT ¼ eIsbT ð26Þ

we can now rewrite Eqn 25 as

ðsI þ BÞbT eðsIþBÞbT ¼ �AbT eBbT ð27Þ

Now, the Lambert W function is given by

W ðxÞeW ðxÞ ¼ x ð28Þ

Therefore, if we have an equation of the form y = xex it can be
rewritten as x = W(y). Eqn 27 becomes

ðsI þ BÞbT ¼ W ð�AbT eBbT Þ ð29Þ

Rewriting Eqn 29 leads to an expression for the eigenvalues of the
characteristic Eqn 17

sI ¼ 1
T

W ð�AbT eBbT Þ � B ð30Þ

Therefore, the stability boundary of the system can be calculated
from

det sI � 1bT W ð�AbT eBbT Þ þ B
� �

¼ 0 ð31Þ

To locate the stability boundary we find s, which satisfies Eqn 31
for a given set of parameters. If the real part of s satisfies, Re(s) < 0,
the system is stable.
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Inclusion of sigmoid activation function

The inclusion of the sigmoid activation function complicates the
situation. However, we can make analytic progress by linearizing the
function and then following the same procedures outlined previously.
The result is the characteristic equation

sI þ ~Ae�sbT þ B ¼ 0 ð32Þ

where

~A ¼ 0
F 0S�wGS

s
�F 0G�wSG

s
F 0G�wGG

s

" #
ð33Þ

The derivatives of the activation functions in Eqn 33 can be written
as

F 0S� ¼ F 0Sð�wGSG�ðtÞ þ wCSCtxÞ ð34Þ

F 0G� ¼ F 0GðwSGS�ðtÞ þ wGGG�ðtÞ � wXGStrÞ ð35Þ

If we solve Eqn 32 we find that the stability boundary has
been shifted by the derivatives of the sigmoid functions at the fixed
point of the system. The stability boundary when wGG = 0 is

bT ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wSGF 0S�wGSF 0G� � 1

p arccos 1� 2
wSGF0S�wGSF0G�

� �
ð36Þ

When we include intrinsic GP connectivity we get

det sI � 1bT W ð�~AbT eBbT Þ þ B
� �

¼ 0 ð37Þ

where matrix ~A is given by Eqn 33.

Details of simulations

We solved Eqns 1 and 2 using DDE23 in MATLAB, which is well
documented (Shampine & Thompson, 2001).

To find the stability boundary of the nonlinear model, we first
required the fixed points of the system, given by S* and G*. This was
achieved by minimizing Eqn 38 for different values of wSG and wGS

K ¼ �½SðtÞ þ FSð�wGSGðtÞ þ wCSCtxÞ�2 þ ½�GðtÞ
þ FGðwSGSðtÞ � wGGGðtÞ � wXGStrÞ�2

ð38Þ

For each pair of wSG and wGS we calculate S* and G*. These values
could then be substituted into Eqns 34 and 35 to give F 0S�and F 0G�.
Using these we could calculate the stability boundary from Eqns 36
and 37 for different values of the time delay. Eqn 37 is stable when the
real part of the eigenvalues satisfies, Re(s) £ 0, for a given set of
parameters.

The criterion for oscillation onset, in numerical simulations, is the
set of parameters that correspond to a sustained increase in oscillation
amplitude. When we investigate the effect of cortical and striatal
inputs on the stability boundary, the criterion for oscillation onset is
that there are sustained oscillations with amplitude between 4 and
7 spk ⁄ s. In all numerical simulations, oscillations at the stability

boundary have small amplitudes that increase as we raise the
parameter values and move further from the boundaries.
It should also be noted that the value of the connectivity among GP

neurons wGG = 1 was chosen for simplicity and because there was
numeric instability when wGG = 6.6 when using Eqns 31 and 37.
However, we have shown that the effect of wGG = 1 is to increase the
value of wSGwGS needed for oscillation onset to occur when compared
with wGG = 0.

Results

In the previous section we derived conditions for oscillation onset, for
the model of the STN–GP network, shown schematically in Fig. 1A.
Importantly, these conditions were obtained without the assumption
that the synaptic transmission was close to zero, in contrast to the
previously derived stability conditions of Nevado Holgado et al.
(2010), who made this assumption. In this section we compare these
two sets of conditions with numerical simulations of the models.
The Results section is split into two parts reflecting the work in the

Materials and methods. The first part deals with a linear model that
makes the simplifying assumption that the firing rate of the neural
populations changes linearly with their inputs. The second part deals
with the nonlinear model that makes the more realistic assumption that
the firing rate of the neural populations varies as a sigmoidal function of
their inputs (Wilson & Cowan, 1972) (see Fig. 1B). We consider here
two cases of each of these models. (i) A simplified model not including
the self-interaction of GP neurons, we set wGG = 0. We consider this
case for two reasons. Firstly, in the article by Nevado Holgado et al.
(2010), it was shown that intrinsic GP connectivity was not essential
for beta wave generation. Secondly, as we will show, an analytic
solution is possible and this provides useful insight into the case when
intrinsic GP connectivity is present. (ii) The inclusion of the GP self-
interaction by setting wGG „ 0. In this way we progress towards the
most general result, gaining insight into the system as we progress.

Linear model without intrinsic globus pallidus connectivity

Eqn 39 is the condition that the parameters of the model need to satisfy
in order for the system to generate oscillations and Eqn 40 is the
approximate condition derived by Nevado Holgado et al. (2010).

T
s

>
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wGSwSG � 1
p arccos 1� 2

wGSwSG

� �
ð39Þ

T
s

> wGSwSG ð40Þ

In the inequalities, wGS and wSG denote the strengths of synaptic
connections between the neural populations shown in Fig. 1A, T is the
synaptic transmission delay and s is the membrane time constant
of the neurons. Both conditions predict that, for oscillations to occur,
the weights of the connections between the STN and GP, as well as
the synaptic transmission delay, must be sufficiently high with respect
to the membrane time constant. Furthermore, in the limit that T fi 0,
both conditions require that wGSwSG fi ¥.
Figure 3A shows that the condition given by Eqn 39 matches better

when oscillations occur in simulations than Eqn 40. This is particu-
larly true when T is much larger than zero.
According to Nevado Holgado et al. (2010), the biologically relevant

region, once scaling is taken into account, corresponds to the range
T ⁄ s = 0.6–0.8 s of the time delay. In this region we can see a significant
improvement, approximately30%, in thepositionof the stability boundary.
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For long time delays, which may be relevant for other systems, the
conditions differ significantly in their predictions. The inequality (40)
of Nevado Holgado et al. (2010) implies that as T fi ¥, the weights
wSGwGS can be just slightly above zero for the model to oscillate. By
contrast, the right-hand side of inequality (39) is only defined for
wSGwGS > 1, implying that, no matter how long the delay is, wSGwGS

has to be higher than 1 for the system to oscillate, as also seen in the
simulation of Fig. 3A. In the limit that T fi ¥, the lowest wSGwGS

for which (39) is satisfied converges to 1.

Linear model including intrinsic globus pallidus connectivity

Whenwe include connections amongGPneurons it is no longer possible
to derive an inequality for the parameters that the model must satisfy to
produce oscillations. Therefore, in the Materials and methods we

showed that the stability boundary of the linear model with intrinsic GP
connectivity can be found by numerically solving Eqn 31. Figure 3B
compares Eqn 31 and the combined conditions 9 and 10 (Nevado
Holgado et al., 2010) with numerical simulation. We see a significant
improvement in the approximation of the stability boundary.

Nonlinear model

The inclusion of the nonlinear sigmoid makes the results more
complicated but does provide useful insights. We have shown how to
derive the stability boundary from the linearized equations in the
Methods and materials. To summarize, the expression for the case
without intrinsic GP connectivity is given by Eqn 41. The stability
boundary includes the derivatives of the sigmoid functions at the fixed
points of the system, for which we will now provide intuition. A fixed
point is defined as the activity levels of the STN and GP at which the
activity does not change. For example, in the numerical simulation of
Fig. 2A, the activity levels of the STN and GP converge to stable
values, which we denote by S* and G*. If the system oscillates
(Fig. 2B), the activity levels oscillate around the fixed point. The
values of the fixed points from Fig. 2A are also indicated in Fig. 1B.
Terms F 0S�and F 0G�are defined as slopes of lines tangent to the sigmoid
functions at the fixed points (see Fig. 1B and C). F 0S�and F 0G�describe
how much the neural populations change their activity level due to
synaptic input. For example, according to Fig. 1B, if STN activity is
very close to zero, then small changes in the input have no effect on
the activity (this corresponds to a situation when all neurons are highly
hyperpolarized). By contrast, when STN activity is around 150 Hz, the
STN neurons react strongly to their input. In inequality 41, the slopes
of the sigmoid functions multiply the weights between the STN and
GP. This expresses the fact that, for the system to oscillate, not only
must the synaptic connections between the STN and GP be sufficiently
high but the STN and GP firing rates must be such that the neural
populations react to their inputs. In the next section we will discuss
how F 0S�and F 0G� are modified by cortical and striatal inputs. As the
product of these derivatives is always £ 1, the product of wSGwGS is
always larger than the corresponding linear case for a given T ⁄ s.

T
s

>
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wSGF 0S�wGSF 0G� � 1

p arccos 1� 2
wSGF 0S�wGSF 0G�

� �
ð41Þ

Evaluating inequality 41 for different values of delay agrees very
well with the simulations shown in Fig. 4A.
If we include the intrinsic GP connectivity, its effect is to slightly

increase the values of wSGwGS at which oscillations occur (Fig. 4B) in
comparison to the case when wGG = 0. This is due to wGG introducing
decay into the activity levels of the GP. An increase in the product
wSGwGS is therefore required to balance out the influence of wGG and
allow oscillations between the STN and GP populations.

Effect of cortical and striatal inputs on the model

A feature of the nonlinear model is that it introduces the activity levels
of the cortex and striatum in the condition for oscillation through the
terms F 0S�and F 0G�,which were not included in the linear models.
We used the linearized model without intrinsic GP connectivity

wGG = 0 and the unhealthy weights of Table 2. For the case when
wGG „ 0, the intrinsic connectivity does not significantly alter the
influence that the cortical and striatal inputs have on the system. For
this reason we chose to focus on the case wGG = 0, which is more
straightforward yet displays similar behaviour.

A

B

Fig. 3. Comparisons of the conditions for oscillation onset, for the linear
models, with numerical simulations. The STN–GP circuit is unstable, and
therefore oscillatory, when its parameters correspond to the region above the
curves. Conversely the system is stable when it is below the curves. (A) The
stability boundary for the linear system without intrinsic GP connectivity
(wGG = 0). Simulations show that the onset of oscillations occurs very close to
the stability boundary calculated from Eqn 39 even for long time delays. This is
in contrast to the previous conditions, Eqn 40, which compares less well at
larger delay values. (B) Linear system including intrinsic GP connectivity
(wGG = 1). The stability boundary approximation from Eqn 31 compares well
with simulation and is significantly better than the earlier approximation given
by Eqn 41, from Nevado Holgado et al. (2010).
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Figure 5 shows for what values of the cortical and striatal inputs the
model produces oscillations and below we provide intuition of why it
happens. On the basis of Fig. 1A we can infer that, as we increase
cortical input, both fixed points, S* and G*, will increase. This
happens because cortical input has an excitatory effect directly on the
STN and indirectly on the GP. This leads to an initial increase in
F 0S�and F 0G�and then a subsequent decrease, as the cortical input
continues to rise, as shown in Fig. 1C. However, it is important to note
that, generally, the STN and GP are unlikely to produce sustained
activity above 200 Hz. The system is therefore unlikely to reach a
point where the value of F 0S�and F 0G�begins to diminish because of
ever-rising inputs. In particular, we would not see very high cortical
inputs where the activation functions become saturated, effectively
decoupling the neural populations from each other.

The effect of striatal input is a bit more complicated. Figure 5
shows that, if we start in a nonoscillatory region and increase the

striatal input, we can push the system into an oscillatory region. As the
striatal input is increased further, the oscillations will stop. In terms of
the fixed points, if there is an increase in the striatal input we will see
an increase in S* but a decrease in G*. This is because the striatum has
an inhibitory influence on the GP (Fig. 1A) and therefore the
inhibitory influence of the GP on the STN is lessened, leading to an
increase in the STN firing rate.
The reason for this behaviour can be understood by reference to

Fig. 6 and Eqn 41, which will allow us to investigate how the left-
hand side of the inequality changes as we increase the striatal input
and therefore change the fixed points of the system. Figure 6A–C
shows the outputs of the STN and GP populations for three different
striatal inputs, indicated by points A, B and C in Fig. 5. Figure 6A
shows the fixed points of the system corresponding to a healthy
individual. Note that the STN is quite subdued because, although it
receives input from the cortex, it receives a large inhibitory input from
the GP. The system can be said to be generally inhibited, F 0S�is small,
and therefore inequality 41 is not satisfied and oscillations do not
occur. In Fig. 6B an increase in the striatal input inhibits the GP
population, which in turn reduces its inhibitory influence over the
STN. The STN is therefore more excitatory and its output is increased
(Fig. 6B). In terms of Eqn 41, what has occurred is that, although
F 0G�has been slightly reduced, F 0S�has been substantially increased so
that the product of the activation function derivatives F 0S�and F 0G�has
been increased causing oscillation onset. In Fig. 6C, as the striatal
input continues to increase, we return to a situation, as in Fig. 6A, in
which the product of F 0S�and F 0G�is again low and therefore oscillation
does not occur.

Discussion

We have confirmed previous work by Nevado Holgado et al. (2010)
showing which parameters were important for the onset of oscillations
in the basal ganglia. The frequency of these oscillations is influenced
mainly by two factors, discussed in depth by Nevado Holgado et al.
(2010), which are the time delay T and the membrane time constant s,

A

B

Fig. 4. Comparisons of the conditions for oscillation onset, for the nonlinear
models, with numerical simulations. The STN–GP circuit is unstable, and
therefore oscillatory, when the parameters correspond to the region above the
curves. Conversely the system is stable when it is below the curves. (A) The
stability boundary for the nonlinear system without intrinsic GP connectivity
(wGG = 0). The numerical solution compares very well with simulation of the
nonlinear model for all values of the time delay. (B) The region of stability for
the nonlinear system with intrinsic GP connectivity (wGG = 1). At the stability
boundary the numerical solution compares very well with simulation of the
nonlinear model for all values of the time delay. In both cases, cortical and
striatal inputs are also included with values: wCS = 9.2, wXG = 139.4,
Ctx = 27, Str = 2.

Fig. 5. The effect of striatal and cortical input on the stability boundary for
parameters associated with Parkinson’s disease and wGG = 0. The system is
oscillatory when its inputs correspond to the region above the curves and it is
stable when below the curves. It can be seen that oscillation onset can be
initiated by an increase in either cortical or striatal input. For fixed cortical
input, an increase in striatal input will push the system from a stable region
(point A), to an unstable oscillatory region (point B), and back to a stable
region again (point C).
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which determine how long it takes for information to traverse the
STN–GP loop.
Using experimentally measured parameters (Table 2), it was shown

how this model could produce beta oscillations in the range 13–20 Hz.
However, whereas the earlier work was qualitatively accurate, we
have quantitatively improved on the conditions in both the linear and
nonlinear models. In particular, the previous work suggested that, as
the time delay increased, the strength of synaptic connections between
STN and GP neurons required for oscillations tended to zero, which is
inconsistent with the results of simulations. In contrast, our results are
valid for arbitrary large time delays. In the biologically relevant
region, T ⁄ s = 0.6–0.8 s, with wGG = 1 the difference between
wSGwGS required for oscillations suggested by the two methods was
approximately 30–50%. As explained in the Introduction, the time
delay is an important parameter that enriches the behaviour of our
system and is essential for oscillation generation in this circuit. In
particular, it is seen here that, as the synaptic delay time T increases, a
lower value of the connection weights wSGwGS is required for
oscillation onset.

Relationship to previous modelling studies

The relationship of the model with previous works (Gillies et al.,
2002; Terman et al., 2002; Humphries et al., 2006; Leblois et al.,
2006) was discussed by Nevado Holgado et al. (2010); however, for
completeness we will give a brief overview. The model by Gillies
et al. (2002) used a mean firing-rate model of the STN–GP network
that was simple enough to enable mathematical analysis and provide
conditions for oscillation onset. In this study, all parameters were

obtained from experiments except for the network weights. They then
showed that there existed three states corresponding to stable, bistable
and oscillatory behaviour for different values of the connection
weights. It differed from the model analysed here in that it omitted
synaptic transmission delay between neural populations. In addition, it
assumed the existence of connections among STN neurons, which was
crucial for oscillation onset in the model. However, experimental
evidence for these connections is not sufficiently strong so they are not
included in our model. The model by Leblois et al. (2006) provided a
detailed account of action selection in the basal ganglia. Using a
reduced model to gain further insights, they showed that synchronous
oscillations did occur for reduced dopamine levels but that the
frequency of these oscillations was � 10–12 Hz, which was outside
the beta band range. The remaining articles in the literature (Terman
et al., 2002; Humphries et al., 2006) focused on large spiking models
that, although contributing much to the discussion, are difficult to
analyse mathematically. In addition to these models there are a
number of other works not discussed by Nevado Holgado et al. (2010)
that we shall now discuss, which are highly relevant to our approach.
The inhibitory–excitatory loop architecture of the STN–GP network

(sometimes called recurrent inhibition or inhibitory–excitatory net-
work) is common in biology. Wilson & Cowan (1972) have gone so
far as to say, ‘all nervous processes of any complexity are dependent
upon the interaction of excitatory and inhibitory cells’. This landmark
article inspired much research into excitatory–inhibitory populations
of neurons. In our article, we have included the signal time delay
between neural populations as an extension of the Wilson and Cowan
model and find that it can produce oscillations without connections
among excitatory neurons (which are necessary for oscillations in the

A

B

C

Fig. 6. The points in A, B and C correspond to the fixed points of the system at the marked points A, B and C in Fig. 5. It illustrates how the outputs of the
activation functions are changed by an increase in the striatal input. In A we see healthy-type behaviour where the GP population is effectively inhibiting the STN
population. In B we see that, although F0G� has been slightly reduced, F0S� has been substantially increased so that the product of the activation function derivatives
F0S� and F0G� has been increased causing oscillation onset. In C we see that, when striatal input is very large, it significantly suppresses the firing rate of the GP
population and oscillations stop.
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Wilson and Cowan model). This connection was present in the model
by Gillies et al. (2002), where their model depended on a strong STN
self-interaction term for oscillation onset.

It has been known for some time that network delays are associated
with oscillations (Plant, 1981). Combining this idea with the
successful Wilson and Cowan model provided new opportunities to
study neural populations. Together with the work presented here,
another recent article has investigated this extended model (Coombes
& Laing, 2009). This work follows the same arguments as our own;
however, the analysis remains more general by including two different
time delays, one between the neural populations and another for self-
interaction terms. The added complication of multiple delays proves
more challenging to solve. Biologically, the two delays in our system
were similar enough that approximating them with a single delay is
appropriate. Indeed, it can be shown that the more general expression
of Coombes & Laing (2009) does reduce to the one studied here when
the two delay times are equal. Importantly, we show how the single
delay equations are solvable with results that closely match simula-
tions of the delay equations. The solution of the two-delay system is
left unsolved.

In a recent article closely related to our work, Kumar et al. (2011)
have shown using a simulation of the STN–GP network that increases
in striatal inhibitory input to the GP are enough to cause oscillation
onset in their model. Such increase of the striatal input to the GP
occurs according to the ‘classical model of Parkinson’s disease’
(Obeso et al., 2000). According to this theory, striatal neurons
projecting to the GP express predominantly D2 receptors and are
inhibited by dopamine, and thus dopamine loss results in increased
inhibition of the GP and subsequent disinhibition of the STN. Several
experimental studies confirm the increase in firing rates occurring in
the STN, and the decrease seen in GP populations, with the onset of
Parkinsonian symptoms (Filion & Tremblay, 1991; Bergman et al.,
1994; Raz et al., 2000; Heimer et al., 2002).

As both we and Kumar et al. (2011) find that increases in striatal
input can cause oscillations in the STN–GP circuit, it is important to
compare these findings more closely. Specifically, the model used by
Kumar et al. (2011) is a leaky integrate-and-fire model composed of
1000 excitatory neurons for the STN population and 2000 inhibitory
neurons for the GP population. The connection probability is 5%
between the STN and GP population, and 2% among GP neurons.
Unlike our model, this model also includes connections among STN
neurons with 2% probability. This model uses two different synaptic
delay times, 5 ms for connections between the STN and GP and 2 ms
for connection among STN and GP neurons. Both populations receive
input in the form of uncorrelated Poisson spike trains. Importantly,
their model did not explicitly rely on the assumption that the strength
of synaptic connections between STN and GP neurons increased due
to dopamine loss [which was assumed in previous models by
Humphries et al. (2006) and Nevado Holgado et al. (2010)]. Instead,
the simulations showed that increased inhibition from the striatum to
GP was sufficient for triggering oscillations in the model.

The level of abstraction of the STN–GP circuit is the most
conspicuous difference between Kumar et al. (2011) and the firing-
rate model that we have presented. Despite this difference, the models
share a similar architecture. It is therefore noteworthy that they both
show that increasing striatal input can cause oscillation onset.
However, whereas the leaky integrate-and-fire model allows simula-
tions of the circuit, our analysis can provide an analytic explanation
for why the oscillations occur. We therefore believe that the modelling
approaches that lead to these conclusions are complementary and that
the results from Kumar et al. (2011) are consistent with our conditions
for onset of oscillations.

Relationship of model to experimental data

The relationship of the model to experimental data was discussed in
detail by Nevado Holgado et al. (2010); however, for completeness
we shall provide a summary of this discussion.
Our new analysis agrees quantitatively with the old analysis by

Nevado Holgado et al. (2010) in that the stability conditions given by
Eqns 24, 31, 36 and 37 show that a reduction in the synaptic weights
wSG and wGS can stop oscillations. This is supported by experimental
data. In particular, antiparkinsonian effects have been shown when
glutamatergic neurotransmission has been blocked, lending support to
the idea that the reduction of wSG can reduce Parkinsonian symptoms
(Greenamyre, 1993; Lange et al., 1997). Evidence for wGS comes
from a study by Baufreton et al. (2005), where it is shown that
inhibition from the GP to STN is crucial for beta oscillation
generation. They also propose that, in the dopamine-depleted STN,
feedback inhibition from the GP is amplified leading to beta
oscillations; conversely then, a reduction in wGS may help to alleviate
beta oscillations.
It is not obvious, considering the new stability conditions given by

Eqns 31 and 37, that reducing the time constant s will induce beta
oscillations; however, it is clear from the more simple conditions
given by Eqns 24 and 36. The time constant is influenced by the
composition of fast and slow synapses in the population. The time
constant can therefore be reduced by increasing the relative numbers
of fast and slow synapses. This has been shown to occur (which is
equivalent to a decrease in s) in rodent models of Parkinson’s disease
(Shen & Johnson, 2005).
Lastly, the model predicts that cortical input to STN is necessary for

the presence of beta oscillations (see Fig. 5). This condition is
consistent with the finding of Phillips et al. (2006), who showed that
blocking metabotropic glutamate receptor 5 receptors in the STN
alleviates symptoms in rat models of Parkinson’s disease.

Future work

The benefit of firing-rate models is that they are often mathematically
tractable, allowing analytical insights of the system dynamics.
However, the limitation of this approach is that it does not include
the full range of complex behaviours that can be seen in spiking
neural networks. Also, due to the difficulties of solving a system that
includes two or more different synaptic transmission delays analyt-
ically, our model was restricted to a single variable for this parameter.
Therefore, in view of these limitations, a future direction for this work
would be to explore a model of this network composed of multiple
integrate-and-fire neurons in which the connections between the two
populations have heterogeneous delays. The parameters of this
stochastic model could be found by deriving the relationship of
single neuron parameters to the firing-rate parameters of the model of
Nevado Holgado et al. (2010). Using this model, we could then check
whether the derived stability conditions hold for a spiking neural
network.
Another aspect of the model where future research would be useful

is elucidation of the relative importance of the separate wSG and wGS

connections. As remarked upon in Nevado Holgado et al. (2010),
there exists some asymmetry in the influence of the weights wSG and
wGS. A clearer understanding of this asymmetry would refine our
understanding of the process of beta oscillation generation in the
STN–GP circuit.
In conclusion, the methods presented are general enough to be of

use in analyses of models with similar architectures. It is hoped that,
because of the close fit between theory and simulation, these results
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will find applications in other assemblies of excitatory and inhibitory
neurons, in other brain regions, particularly where time delay signals
are significant.
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