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Neuroscience time series data from a range of techniques and species reveal complex, non-linear inter-
actions between different frequencies of neuronal network oscillations within and across brain regions.
Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with
linearly covariant (within-frequency) activity to dynamically coordinate functionally related neuronal
ensembles during behaviour. Such studies depend upon reliable quantification of cross-frequency coor-
dination, and we compare the properties of three techniques used to measure phase—amplitude coupling
(PAC) — Envelope-to-Signal Correlation (ESC), the Modulation Index (MI) and Cross-Frequency Coherence
(CFC) — by standardizing their filtering algorithms and systematically assessing their robustness to noise
and signal amplitude using artificial signals. Importantly, we also introduce a freely-downloadable method
for estimating statistical significance of PAC, a step overlooked in the majority of published studies. We find
that varying data length and noise levels leads to the three measures differentially detecting false positives
or correctly identifying frequency bands of interaction; these conditions should therefore be taken into
careful consideration when selecting PAC analyses. Finally, we demonstrate the utility of the three
measures in quantifying PAC in local field potential data simultaneously recorded from rat hippocampus
and prefrontal cortex, revealing a novel finding of prefrontal cortical theta phase modulating hippocampal
gamma power. Future adaptations that allow detection of time-variant PAC should prove essential in
deciphering the roles of cross-frequency coupling in mediating or reflecting nervous system function.

© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction coherence of a given frequency of oscillation between networks of

neurons across numerous brain regions. This within-frequency

Oscillatory activity is a pervasive feature of biological systems in
general and nervous systems in particular. Neuronal oscillations
reflect interdependencies between the relative timing (phase) and
power (amplitude) of rhythmic activity in individual components of
neurons, networks and systems. Oscillation cycle lengths range from
milliseconds (e.g. 100—200 Hz hippocampal ripples), to seconds (e.g.
cardio-respiratory rhythms in brainstem), to hours (e.g. circadian
modulation of cortical excitability), with oscillations at these distinct
frequencies arising from distinct cellular, synaptic and neuro-
modulatory processes (Buzsaki, 2006; Young and Eggermont, 2009).
The powers of these diverse oscillatory frequencies can be dynami-
cally modulated over a similar range of timescales, as can the

* Corresponding author. School of Physiology & Pharmacology, Medical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, UK. Tel.: +44 117
331 2289; fax: +44 117 331 2288.

** Corresponding author.
E-mail addresses: R.Bogacz@bristol.ac.uk (R. Bogacz), Matt.Jones@bristol.ac.uk
(M.W. Jones).

0079-6107/$ — see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.pbiomolbio.2010.09.007

coordination reflects and mediates functional connectivity, allowing
specialized structures to both encode information independently and
to interact selectively according to behavioural demands (Fries, 2009;
Varela et al., 2001). However, rather than constituting independent
communication channels analogous to AM radio signals, different
frequencies of neuronal activity simultaneously interact with one
another in nested, multiplexed signals. This cross-frequency coupling
may reflect an important component of the synchronized neuronal
activity believed to underlie brain function, and deciphering its
mechanisms and roles necessitates increasingly sensitive and
complex analyses and models.

1.1. Cross-frequency coupling in neuronal data

Cross-frequency coupling of neuronal activity is evident in at least
two forms: (1) phase synchrony, during which a consistent number of
higher-frequency cycles occur within single cycles of a lower-
frequency rhythm (Tass et al, 1998) and (2) phase—amplitude
coupling (PAC), during which the phase of a lower-frequency rhythm
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modulates the amplitude of a higher-frequency oscillation. Although
the extent to which phase synchrony and PAC reflect similar mech-
anisms and roles remains to be established, both types of coupling are
evident in a range of EEG, electrocorticogram (ECoG), magneto-
encephalogram (MEG) and local field potential (LFP) data recorded
from a range of brain regions and species. The majority of phase
synchrony examples to date stem from studies of human neocortex
(Darvas et al., 2009a,b; Palva et al., 2005; Palva and Palva, 2007); in
contrast, PAC is prevalent in both human and rodent neocortical,
allocortical and subcortical regions, and currently represents a more
experimentally tractable model of cross-frequency coupling (see
Jensen and Colgin, 2007).

The archetypal example of neuronal PAC was first uncovered in
the CA1 subfield of the hippocampus, where LFP recordings reveal
a consistent, cyclic variation of gamma-frequency (30—100 Hz)
power with concurrent theta-frequency (5—10 Hz) phase (Bragin
et al, 1995; see Fig. 1 for example). Since the connectivity and
activity patterns of hippocampal excitatory and inhibitory principal
neurons and interneurons are increasingly well understood
(Klausberger and Somogyi, 2008), the hippocampus therefore
presents a valuable model network in which to dissect PAC’s
mechanisms and roles. For example, Wulff et al., 2009 used
a genetically altered mouse line lacking functional GABA-A recep-
tors on a subset of interneurons to suggest a role for rapid, synaptic
feedback inhibition in shaping hippocampal PAC.

Models have attempted to link hippocampal theta—gamma PAC
with CAl-dependent memory processing, whereby subsets of
hippocampal units co-active during individual gamma cycles are
recruited in consistent, sequential order dependent upon theta cycle
phase (Lisman and Buzsaki, 2008; Lisman and Idiart, 1995; see also
Fuentemilla et al.,, 2010). There is also evidence to suggest that
hippocampal pyramidal cells differentiate in the preferred phase at
which they fire in relation to theta—gamma PAC activity. This could
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allow for the simultaneous implementation of multiple coding
schemes for memory items, stored in both a sequential and non-
sequential context (Senior et al., 2008). Recent data from LFP
recordings from both rat and human hippocampus provide evidence
for a functional role of theta—gamma PAC in mnemonic processing
(Axmacher et al., 2010; Shirvalkar et al., 2010; Tort et al., 2009), but
these hippocampal models and examples also reflect a broader
hypothesis of PAC function: hierarchies of inter-locked oscillatory
frequencies allow ensembles of anatomically localized neurons co-
active on short timescales (i.e. within higher-frequency cycles, e.g.
Siegel et al., 2009) to be temporally aligned (‘bound’) across longer
timescales and anatomical distances by lower-frequency modula-
tion (see Sarnthein et al., 1998). VanRullen and Koch (2003) posited
a PAC-based model of alpha—gamma-frequency interactions medi-
ating perception, and a recent example of data supporting a func-
tional role for hippocampal PAC showed that separable bands of the
gamma-frequency range coincide with different phases of the theta
rhythm in CA1. It was suggested that PAC of gamma at these different
frequencies reflects the dynamic influence of afferent inputs from
CA3 and entorhinal cortical regions to CA1 during different phases of
the theta cycle (Colgin et al., 2009); as such, similar phenomena may
reflect interactions in other systems of connected brain regions.
Beyond the hippocampal formation, PAC phenomena have been
reported in sensory, frontal and parietal human neocortex during
a range of auditory, linguistic and working memory tasks (Canolty
et al., 2006; Osipova et al., 2008; Sauseng et al., 2008), plus in
monkey auditory and visual cortices (Lakatos et al., 2007; Lakatos
et al., 2008) and rodent olfactory bulb (see Rojas-Libano and Kay,
2008). The oscillation frequencies demonstrating PAC in these
various systems and behaviours are by no means restricted to
theta—gamma cross-frequency interactions, but also encompass
delta (1-4 Hz) and alpha (8—12 Hz) rhythms, though variable
definitions of frequency band labels can confound comparisons
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Fig. 1. Local field potential data showing theta—gamma PAC in CA1 of rat hippocampus. (A) 10 s of broadband LFP (left, bandpass filtered at 0.1—475 Hz) and corresponding power
spectrum (right) showing predominant theta-frequency power whilst a rat actively explores its homecage. (B) Expanded 1 s segment showing raw signal (top) and bandpass filtered
theta (middle, 5-10 Hz) and gamma (lower, 60—80 Hz, amplified by a factor of 4 for clarity) rhythms. The thick grey line over the gamma signal shows the amplitude envelope and
dashed horizontal lines mark timing of theta cycle peaks; note alignment of theta peaks and gamma envelope during the first half of the trace. The notation to the right is defined in

Methods and used throughout the text.
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across species. Importantly, some studies suggest a continuous
hierarchy of frequencies, with delta modulating theta which in turn
modulates gamma (Lakatos et al., 2005); simultaneous PAC across
such a range of timescales raises important questions about the
underlying network structure giving rise to the phenomenon, as
well as the relative functional contributions of oscillations at
distinct frequencies.

Importantly, PAC does not occur only within functionally
specialized brain regions, but also across functionally related brain
regions. For example, hippocampal—striatal PAC is dynamically
modulated alongside behavioural task demands in rat (Tort et al.,
2008), and hippocampal theta phase can also modulate neocor-
tical gamma power (Sirota et al., 2008). Like within-frequency
coherence, PAC is therefore well placed to underpin or reflect the
temporal coordination of neuronal networks across distributed
brain regions, though the basic features of excitatory and inhibitory
network connectivity that give rise to PAC of different frequencies
and in different anatomical regions have not yet been established.

1.2. Analysis of phase—amplitude coupling

Fig. 1 shows 1 s of LFP data recorded from hippocampal CA1 of
a freely behaving rat; whilst PAC is clearly evident upon visual
inspection, these data demonstrate some central challenges that
arise when attempting to quantify its extent and nature. These
include, but are not limited to:

i. a variable signal-to-noise ratio between the amplitudes of
both phase modulating and amplitude-modulated signal;

ii. estimating the statistical significance of any PAC present,
given that PAC may arise by chance in signals simultaneously
containing power in low and high frequencies;

iii. quantifying the time-variant dynamics of PAC, which is non-
stationary and may come and go from one lower-frequency
cycle to the next;

iv. limits imposed by the length of available data series, for
example precluding analyses of low frequency signals;

v. establishing whether PAC applies to all frequencies present,
or is restricted to specific pairs of modulating and modulated
oscillations;

vi. determining whether amplitude-modulated power varies
continuously with modulating phase, or whether step-like
changes in amplitude underlie PAC.

Robust, sensitive analysis methods with sufficient temporal
resolution and statistical power are therefore essential for the study
of PAC, particularly in limited and/or noisy neurobiological data. A
number of methods have been published in recent years, some of
which have been compared and reviewed in different combinations
elsewhere (Cohen, 2008; Penny et al., 2008; Tort et al., 2010). Here,
we briefly review three of the available PAC analysis methods; we
have standardized the algorithms for their implementation to
enable an objective, quantifiable comparison of their advantages
and limitations, which are demonstrated and discussed in relation
to both simulated and real LFP data.

2. Methods
2.1. Notation

Throughout the following sections we denote the raw signals as
Xpn(t) and Xamp (t), corresponding to the signal assumed to contain
the lower, modulating frequency and the signal assumed to contain
the higher, modulated frequency respectively. In analyses used to
investigate the phase of a slower oscillation modulating the

amplitude of a faster oscillation within the same signal,
Xon = Xamp. Each of the PAC detection measures relies on filtering
one or both of these signals for particular frequencies. Yg,, will
denote signal X, filtered for a particular frequency, fph. Yy, will
denote the signal Xgmp filtered for a particular frequency, famp.
Examples of the raw and filtered signals with corresponding
notation can be seen in Fig. 1.

All the measures require the calculation of Agp,,, the instanta-
neous amplitude envelope of the higher-frequency oscillation (also
shown in Fig. 1). The MI measure also requires the instantaneous
phase of the lower-frequency oscillation, denoted 0, (t). These are
calculated by first obtaining an analytic representation of the
appropriate signal, either using the Hilbert transform or filtering
the signal via convolution with complex Morlet wavelets. The
instantaneous amplitude and phase can then be calculated as the
absolute value and the phase angle of the analytic signal
respectively.

2.2. The Envelope-to-Signal (ESC) measure
(Bruns and Eckhorn, 2004)

The ESC measure calculates the correlation between the
amplitude envelope of the filtered high frequency signal, Agypp, and
the filtered low frequency signal, Yp,.

ESCfphAfamp = r<Afamp> Yfph)

2.3. The Modulation Index (MI) (Canolty et al., 2006)

The MI measure generates a complex valued composite signal
such that the amplitude is composed of the high frequency
amplitude envelope values, Ag,mp, and the phase is composed of the
low frequency signal’s instantaneous phase, fpp (t).

prhsfﬂmp(t) = Afamp(t) . elfpn (t)

This composite signal creates a joint probability density function
when viewed on the complex plane. If the average of the signal is
non-zero then, assuming the distribution of fph phase values is
uniform, this indicates a tendency for a particular amplitude and
phase value to co-occur in time. An MI value is calculated as the
absolute value of the average of the composite signal:

leph,famp = ‘average(prhfamp(t))‘

2.4. Cross-Frequency Coherence (CFC) (Osipova et al., 2008)

The CFC measure calculates the coherence at frequency fph
between two signals: the time-varying energy of the high
frequency signal (calculated as Az, divided by half the sampling
frequency and then squared, denoted Ag,,,,) and the unfiltered raw
signal believed to contain the modulating frequency, X,,.

CFCpyph, famp = Coherenceg,, (XpmAfamp)

2.5. Standardization and implementation

The three PAC detection measures were implemented in
a MATLAB toolbox, available at http://www.cs.bris.ac.uk/Research/
MachineLearning/pac/

In order to directly compare the measures, a common method of
filtering the data was employed. We chose to filter via convolution
with complex Morlet wavelets with width =7. Preliminary tests
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with various different types of filters showed that an acceptable
alternative to wavelet filtering is to use a two-way least squares
filter such as that implemented by the eegfilt function (part of the
EEGLAB toolbox for MATLAB http://sccn.ucsd.edu/eeglab/). Infinite
Impulse Response filters such as the Butterworth filter do not have
sufficient frequency response characteristics to capture the neces-
sary time-frequency information which determines PAC signals.

Our implementation of the three measures also includes
a method of statistical significance testing; again this is common to
all three measures. The high frequency amplitude envelope signal is
shuffled in order to disrupt the time-ordering of values. This is
achieved by dividing the data into sections, the number of which is
set equal to the number of seconds of data or 1000, whichever is the
larger value. The boundaries of the sections are placed at random
locations chosen with uniform probability throughout the signal.
The sections are then rearranged at random to create the final
shuffled signal. This procedure retains the mean, variance and
power spectrum of the original signal whilst removing the temporal
relationship between amplitude values. Discontinuities are intro-
duced and there is evidence that this can introduce spurious PAC
detection results (Kramer et al., 2008), however the performance on
artificial data was still deemed sufficient, presumably since the
discontinuities are independently distributed in time. A population
of 50 shuffled signals are created and compared to the original low
frequency signal in order to generate a distribution of PAC values
using the appropriate measure. PAC values lying in the top 5% of this
distribution were deemed significant.

2.6. Generation of artificial data

In order to test the performance of the three PAC detection
measures we generated artificial data in which we could control if and
to what extent PAC occurs. Since the majority of neuronal recordings
presenting PAC focus on theta modulating gamma rhythms (Bragin
et al, 1995) we chose to create signals containing power at
fph=4Hz and famp = 60 Hz. The sampling frequency Fs = 1017 Hz.

To build our data first we generated two signals, one oscillating
at fph and one at famp:

Sign(t) = sin((fph/Fs)2mt) (2.4.1)

Sigfamp(t) = sin((famp/Fs)2wt) (24.2)

Artificial data without PAC were generated by simply adding
these two signals and some Gaussian white noise, WN:

Signopac = Sigpn(t) + Sigfmp(t) +0-WN (2.4.3)

where ¢ is the standard deviation of WN, used as a scaling factor to
increase the level of noise.

Artificial data containing PAC were generated in a similar way to
amplitude-modulated radio waves, forming the product of
Sigfamp (t) and the signal sigg,, (t) increased by 1 (so its minimum is
at 0), and adding white noise:

Xamp(t) = K-Sigamp(t)- (sigpn(t) + 1) + ¢-WN (2.4.4)

where K=a scaling factor used to control the amplitude of the
60Hz signal.

A second artificial signal, Xy, (t), containing only an oscillation at
fph =4 Hz and some white noise was used as a comparison signal.
Xpn(t) = sigpp(t) +0-WN (2.4.5)

Sample artificial signals are shown in Fig. 2A. It is possible to add
this component signal to the signal containing PAC, Xqmp(t), and

then compare this signal with itself in order to look for coupled
frequencies, however this has a tendency to produce spurious
artifacts with some of the measures.

2.7. Quantifying the performance of PAC measures

Several related tests were conducted to compare the perfor-
mance of ESC, MI and CFC methods.

2.7.1. False positives

In order to test whether the measures would erroneously report
significant PAC when it was not engineered into artificial data, we
generated 10 s of X;,opac(t), (see Equation 2.4.3). The PAC detection
measures were tested by comparing this signal with itself and
looking for false coupling at 4 Hz modulating 60 Hz. This test was
repeated for 1000 iterations for each measure.

2.7.2. True positives and data length-dependence

The PAC detection measures were tested by comparing the
PAC containing signal, Xqmp(t) (Equation 2.2.4), with the signal
containing the modulating frequency, Xp,(t) (Equation 2.2.5),
and looking for coupling at 4 Hz modulating 60 Hz. This test was
repeated for 100 iterations. The standard deviation of the noise
was increased to see how this affected the true positive detec-
tion rate. These experiments were repeated with artificial signals
of length 6, 10 and 14s, in order to examine data length-
dependence.

2.7.3. Correct detection of PAC frequencies as a function
of increasing noise

We then tested to see if the highest value of PAC detected by
each of the measures occurs at frequencies close to the true fph and
famp contained in the artificial data. As for the true positive tests
previously, the standard deviation of the noise was increased and at
each level the three PAC measures were tested, comparing the PAC
containing signal, Xamp(t), with the signal containing the modu-
lating frequency, Xp;(t). In these tests however, the measures were
employed to look for PAC over a range of possible frequencies: from
1 Hz to 101 Hz in bands of 5 Hz width. The first frequency bin of
interest (in terms of both fph and famp) was from 1 to 5 Hz, with the
centre frequency defining the appropriate wavelet kernel set at
3 Hz, the second was from 6 to 10 Hz, with the centre frequency set
at 8 Hz and so on. Investigation of a range of possible coupling
frequency values allowed the creation of a ‘PACgram’, highlighting
the frequencies between which the strongest coupling was found
using a colour scale. A correct detection was defined as the largest
PAC value occurring in a region of sufficient frequency resolution
surrounding the correct value of 4 modulating 60 Hz. This region
was determined to be between 1 and 15Hz in terms of the
modulating frequency, fph, and between 45 and 75 Hz in terms of
the modulated frequency, famp, allowing up to 10 Hz margin for
error along the x-axis of the PACgram and up to 15 Hz along the
y-axis.

2.7.4. Correct detection of PAC frequencies as a function
of decreasing amplitude envelope magnitude

We then investigated the performance of the measures as the
amplitude of the higher-frequency oscillation decreases. The
experiments described in Section 2.5.3 were modified, the noise
level of the generated signals, Xp, (t) and Xamp(t), was kept constant
at ¢ = 1 and instead the amplitude of the 60 Hz oscillation
(Sigamp(t)) was decreased by a scaling factor K. Again the signals
were examined between 1 and 101 Hz in bands of 5 Hz in order to
create PACgrams and the same criteria for correct detection was
applied.
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Fig. 2. Comparison of true positive detection as a function of varying noise level and data length. (A) Raw simulated data signals containing 4 Hz modulating 60 Hz PAC, generated
with different noise levels. Examples show standard deviation, ¢, of white noise set to 1, 5 and 10 respectively; arrows point to corresponding points on analysis graph. (B) Mean
proportions of true positives (defined as significant PAC located within f,; = 1-15 Hz and fump = 45—75 Hz) detected by each of the three PAC measures with increasing noise levels
(dark grey diamonds ESC; light grey squares MI; mid grey triangles CFC). Left to right panels show the same experiment conducted on 6 s, 10 s and 14 s signals. Error bars show

+s.e.m.

3. Results and discussion

We first tested if the methods detect statistically significant PAC
at a fixed combination of frequencies (4 Hz modulating 60 Hz was
used throughout simulations, modeling the theta—gamma PAC
reported in a range of neural data) in artificial data that did not
contain PAC. As we expected all methods detected significant PAC
on average on 5% of simulated signals, and there were no statisti-
cally significant differences between the methods.

Unsurprisingly, consistent detection of statistically significant
PAC in artificially-generated signals containing PAC was dependent
upon noise levels and data length. As shown in Fig. 2, MI, ESC and
CFC methods all correctly identified significant PAC at the fixed
combination of frequencies under low noise conditions; with high
noise, the statistical properties of our shuffling procedure gave rise
to mistaken PAC detection on approximately 5% of trials, satisfying
the preset false positive rate of alpha = 0.05. CFC consistently out-
performed ESC and MI across intermediate noise levels, with CFC’s
advantage becoming more apparent as the length of data analysed
was increased from 6s to 14 s (Fig. 2B). Improvements in the
performance of MI and CFC with data length are also shown for real
data in Fig. 4, and are a consistent feature of these analyses.
Nevertheless, these simulations demonstrate that CFC may be the
better choice of analysis method for short duration, noisy signals,
particularly given a priori reasons to examine PAC at a specific
combination of fpr and fomp frequencies.

The analysis in Fig. 2 focused on a single PAC frequency pairing
of 4Hz and 60 Hz signals, thereby ignoring any erroneous PAC
detection at other frequencies. In contrast, Fig. 3 quantifies the
proportion of significant PAC detected within the appropriate
frequency ranges (1—15 Hz modulating 45—75 Hz) in the face of

increasing noise; erroneous detection of significant PAC elsewhere
in the frequency spectrum can therefore contribute to poor
performance by this measure. MI, ESC and CFC methods performed
similarly in this test. CFC was slightly more consistent at interme-
diate noise levels, but dropped to lower performance than MI and
ESC at high noise. The low proportion of correctly identified PAC by
CFC at high noise levels shown in Fig. 3 is due to incorrectly
detected regions of PAC at frequencies outside the ranges specified
as correct (see also example in Fig. 5A). MI appears able to detect
significant PAC in the correct frequency region even on approxi-
mately 40% of high noise trials, though did generate some vari-
ability in precise PAC frequencies detected. This remarkable
robustness to noise is not purely artefactual, since MI only detects
significant PAC in the expected 5% of tests on independent signals.
Further tests are therefore required to establish whether this
reflects a tendency of MI to detect significant PAC at low fyp
frequencies.

The analyses shown in Fig. 4, like those in Fig. 3, are based upon
correct detection of PAC in appropriate frequency ranges (again
with 4 Hz modulating 60 Hz in the simulated data), but with
varying Xqmp(t) 60 Hz power rather than varying noise levels in
Xamp (t). Accuracy of ESC and MI measures was consistently higher
than of CFC until 60 Hz amplitude was scaled by a factor K> 0.02;
all three measures performed optimally given higher 60 Hz power.

Fig. 5 demonstrates the performance of ESC, MI and CFC tech-
niques on real LFP data recorded simultaneously from hippocampal
CA1 and deep layers of the medial prefrontal cortex (mPFC; pre-
limbic subdivision) using chronically implanted, microwire elec-
trodes in an adult male, Lister Hooded rat freely behaving in
a familiar homecage (see Jones and Wilson, 2005 for recording
details). Fig. 5A shows that all methods detected statistically
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Fig. 3. Correct identification of PAC as a function of signal noise level. 10 s simulated signals containing 4 Hz modulating 60 Hz PAC were created and the standard deviation of the
noise added was increased. Performance was scored by quantifying the proportion of trials in which maximal PAC was correctly located within f,, = 1-15 Hz and fgnp = 45—75 Hz.
(A) Example PACgrams generated by ESC, MI and CFC measures as standard deviation of the noise, o, varied from 1, 5 and 10. Colour scale represents the magnitude of PAC found.
Pixels in which no significant PAC was detected are set to 0. Note different colour scales. (B) Mean results showing decreasing performance as noise levels increase (dark grey

diamonds ESC; light grey squares MI; mid grey triangles CFC). Error bars show +s.e.m.

significant intra-hippocampal PAC consistent with previous
reports, with 5—10 Hz theta phase modulating power of gamma
oscillations at 60—80 Hz. None of the methods detected significant
intra-cortical PAC (data not shown). However, important differ-
ences between methods became apparent when analyses are
applied to 6s vs. 1 min data segments. Whilst all three methods
detected theta—gamma coupling at the expected frequencies
during the 6 s data segment, ESC reported PAC in a much more
restricted frequency range than MI and CFC, with the latter in
particular detecting some significant PAC at higher frequencies. Of
course, lower right-hand regions of the PAC plots reflect impossible
combinations of higher frequencies modulating lower frequencies
and can be ignored. Nevertheless, the extent to which all statisti-
cally significant PAC detected by CFC reflects real neurophysiolog-
ical processes remains to be established.

Analysis of a continuous, 1 min data segment tends to focus Ml
and CFC PAC estimates, though CFC still reports significant PAC at
higher frequencies; in contrast, the theta—gamma PAC magnitude
estimated by ESC reduces in comparison to the 6 s analysis. The
most likely cause of variance between 6 s and 1 min estimates is
non-stationary PAC during the longer segment, which has differ-
ential impact on the methods used here. The ESC measure is more
sensitive to intermittent PAC, since non-coupled epochs within
a longer segment will decrease the value of the overall correlation
between lower-frequency phase and higher-frequency amplitude
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Fig. 4. Correct identification of PAC as a function of gamma envelope amplitude.
Simulated signals containing 4 Hz modulating 60 Hz PAC were created (10 s, standard
deviation of noise = 1) with decreasing 60 Hz signal amplitudes. The horizontal axis
shows the scaling factor K used to control the amplitude of the 60 Hz signal (see
Equation 2.4.4). ESC, MI and CFC performance was tested by quantifying the highest
level of PAC in the region of f,; = 1-15 Hz and fymp = 45—75 Hz. Mean + s.e.m. is shown
for values of K between 0.01 and 0.05.
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Fig. 5. Detection of PAC in local field potentials recorded simultaneously from rat hippocampus and prefrontal cortex. (A) ESC (top row), MI (middle row) and CFC (lower row)
analyses of 6 s (left column) and 1 min (right column) of continuous LFP recorded from CA1 of rat hippocampus, demonstrating theta—gamma PAC consistent with previous reports.
(B) Cross-structural PAC analysis of simultaneously recorded CA1 and mPFC LFP, showing lack of robust modulation of mPFC gamma power by CA1 theta phase during this 1 min
recording segment. (C) In contrast to (B), mPFC theta phase does modulate CA1 gamma power in these data. Colour scales vary from 6 s to 1 min analyses, but are consistent for each
of the three methods for CA1p,—CAlamp, CA1pp—mPFCamp and mPFC,p—CAlamp panels. Pixels in which no significant PAC was detected are set to 0.

envelope. Therefore reduced ESC magnitude in Fig. 5A (note
different colour scales) presumably reflects non-correlated (or
noisy/lower power) theta—gamma epochs within the 1 min
segment. With the MI measure, even intermittent coupling
cumulatively contributes to greater magnitudes of PAC at a partic-
ular combination of frequencies; unless modulating and modulated
frequencies change and signals fall into another coupling rela-
tionship for a sustained amount of time, PAC magnitude at a given
combination of frequencies will be proportional to the length of
data analysed. Similarly, the coherence estimates employed by CFC
are averaged over sliding windows, hence non-stationary coupling
does not necessarily degrade overall PAC estimates. Note that
unlike ESC and CFC, MI detects a region of lower-frequency PAC in
the 1min segment analysed here. Again, this may reflect
a weighting of MI towards low frequency combinations.

Fig. 5A therefore demonstrates that MI or CFC methods can
prove superior when analyses are required to quantify averaged
PAC levels over sustained recording periods. However, such aver-
aging of course masks underlying PAC dynamics, which are
certainly of interest when correlating PAC changes with other
neurophysiological parameters and/or behaviour. ESC, MI and CFC
measures can all be adapted (within the constraints of the methods’
frequency resolutions) to allow characterization of time-variant
PAC using a windowing approach. These adaptations are likely to
prove critical to further elucidating PAC mechanisms and functions.

Fig. 5B shows analysis of cross-structural, CA1—mPFC PAC.
Previous studies using similar recording techniques have reported
that the phase of hippocampal theta modulates the power of
neocortical gamma in rodents (Adhikari et al., 2010; Sirota et al.,
2008). Indeed, the directionality of this reported CA1—mPFC PAC
fits intuitively with known anatomical and functional connectivity
in this limbic-cortical system since (i) the hippocampal formation
sends direct, excitatory projections to mPFC (see Thierry et al.,
2000) whereas direct, reciprocal projections from mPFC to CA1l
have not been described and (ii) the relative timing of mPFC neuron
action potentials phase-locked to CA1 theta oscillations is consis-
tent with CA1 activity leading mPFC activity in this frequency range
(Siapas et al., 2005). Hippocampal projections to mPFC are there-
fore well placed to control timing of mPFC networks. However,
none of the three methods used here detected robust CA1—mPFC
PAC in these sample data. Differences between these reports are
likely to reflect differences in behavioural state since — like
CA1—mPFC theta-frequency coherence (Jones and Wilson, 2005) —
the extent of CA1—mPFC PAC is presumably highly dependent upon
ongoing behaviour in general, and cognitive behaviours recruiting
CA1—mPFC interactions in particular.

Fig. 5C shows the first reported example — to our knowledge —
of mPFC theta phase modulating the power of CA1 gamma oscil-
lations. This mPFC—CA1 PAC occurs at very similar frequencies to
those simultaneously detected within the hippocampus (Fig. 4A),
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though is lower in magnitude and not associated with the higher
modulating-frequency PAC detected in CAl, raising the possibility
that the higher fph PAC evident in Fig. 5A may only be detected in
local, intra-network analyses. Further experiments are required to
rule out volume conduction artefacts in these LFP data (see Sirota
et al., 2008), and further analyses of PAC dynamics are required to
relate the timing of mPFC—CA1 PAC to CA1—CA1 and CA1—mPFC
coupling. Given the lack of direct projections from mPFC to CA1,
coupling in this direction presumably reflects indirect, polysynaptic
influence of mPFC on CA1, potentially via entorhinal cortex.
Nevertheless, the detection of mPFC—CA1 PAC raises the possibility
that bi-directional, theta—gamma cross-frequency coupling is
dissociable from theta-frequency coherence and reflects additional
mechanisms of interaction between hippocampus and mPFC.

4. Conclusions

We present adaptations to ESC, MI and CFC methods that allow
estimates of statistical significance of PAC, thus addressing impor-
tant concerns that the phenomenon may reflect passive spectral
properties of mixed-frequency signals, rather than underlying
neurophysiology. These statistical methods are critical in consis-
tently quantifying PAC levels, particularly when comparing
different experimental, physiological and pathological conditions.
For example, quantifying the impact of pharmacological and
genetic manipulations on PAC is likely to provide critical insight
into mechanisms (Wulff et al., 2009), and quantifying abnormal
PAC in disease states may reveal roles in generating complex,
information processing impairments in neuro-psychiatric disorders
(Jones, 2010; Lisman and Buzsaki, 2008).

Though ESC, MI and CFC measures are all derived from similar
fundamental principles, analyses of simulated data did reveal
dissociable sensitivity and accuracy during varying conditions of
noise, signal amplitude and data length. No one measure unfail-
ingly out-performed the others: CFC is well-suited to applications
with short data series in which known combinations of frequencies
are coupled (Fig. 2), but gives less reliable results than MI or ESC
when surveying noisy data for unknown frequency regions of
coupling (Fig. 3), or when fgmpy power is low (Fig. 4). Whilst MI and
CFC methods are better-suited than ESC to quantification of overall
mean PAC strength in extended time series, the adaptation of all
methods to allow assessment of time-variant PAC should negate
ESC’s shortcomings in this regard. These adaptations will constitute
an essential step towards relating PAC and behavioural dynamics.

All three of the measures implemented here are relatively
computationally intensive in their own right, and more so when
combined with the shuffling procedure used to estimate statistical
significance. Practical constraints are therefore worthy of consid-
eration, particularly when faced with large volumes of continuous
data. ESC and MI algorithms consistently ran more quickly than
CFC, though this issue may be partially bypassed if experimental
design allows for analysis of relatively brief <10 s sections or trials
of data.

Future work could improve the computational efficiency by only
generating PACgram values for frequency combinations falling in
the top half of the matrix, above the main diagonal (bottom left to
top right), since frequency combinations below cannot represent
valid PAC by our definition. This was not done during the current
analyses in order to ascertain if any of the measures suffered from
serious problems with artifactual PAC detection at any given
combination of frequencies. In addition, there may be computa-
tional benefits to using a Fourier transform based phase randomi-
zation procedure (Theiler et al., 1992) to produce surrogate data;
this may also improve detection accuracy by removing the
discontinuities which the current procedure introduces which can

generate spurious high frequency signal components. An inter-
esting extension would be to compare the performance of the
measures on synthetic data generated from computational models.

Whilst theta—gamma PAC within the hippocampus is increas-
ingly well understood in terms of mechanism and function, recent
reports of PAC across other, related brain systems implicate cross-
frequency coupling more broadly in coordinating neuronal network
function, particularly in relation to complex, cognitive behaviours.
Future work establishing the structure of basic network motifs
enabling PAC should therefore extend understanding of its mech-
anisms and roles; these certainly reach beyond theta—gamma
oscillation timescales, and may reach beyond limbic-cortical
neuronal networks to other circuits featuring rhythmic activity. For
example, it became apparent during the ‘Brain Modes’ workshop
highlighted in this issue that PAC-like phenomena also arise in
pulsatile hormone secretions (Walker et al., 2010). Cross-frequency
coupling may therefore arise in a number of biological systems built
upon delayed feedback, reflecting a universal role in coordinating
rhythmic activity across varied timescales.
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