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Abstract

Much evidence indicates that the perirhinal cortex of the temporal lobe is involved in the
familiarity discrimination aspect of recognition memory. All previously published models of
familiarity discrimination in the perirhinal cortex are based on Hebbian learning. Here we
present a biologically plausible model based on anti-Hebbian learning. When the responses of
neurons providing input to the familiarity discrimination network are correlated (as is indicated by
experimental data), then the anti-Hebbian model achieves a much higher capacity (up to thou-
sands of times) and hence a crucially higher e.ciency than models based on Hebbian learning.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Work in monkeys has established that discrimination of the relative familiarity or
novelty of visual stimuli is dependent on the perirhinal cortex, and this 5nding is
consistent with studies of amnesic patients [5,6]. Within the monkey’s perirhinal cortex,
∼25% of neurons respond strongly to the sight of novel objects but respond only
weakly or brie;y when these objects are seen again [6,13].
All previously published models of familiarity discrimination in the perirhinal cortex

[2,10,11] are based on Hebbian learning. When it is assumed that responses of neurons
providing input to the network are uncorrelated, these models achieve very high storage
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capacity, su.cient potentially to explain human familiarity discrimination capabilities.
Under this assumption, if the perirhinal cortex worked akin to these models, it alone
could discriminate the familiarity of many more stimuli than current neural network
models indicate could be recalled (recollected) by all the remaining areas of the cerebral
cortex [2]. However, experimental evidence indicates that the responses of neurons in
the perirhinal cortex are correlated [8]. If so, then the achievable capacities of the
published networks based on Hebbian learning are dramatically reduced [1].
In this abstract we present a biologically plausible familiarity discrimination network

based on anti-Hebbian learning, that achieves much higher capacity than networks
based on Hebbian learning when the inputs are correlated. Due to space limitation this
abstract includes only a description of the model and results of simulations. The deriva-
tion of the capacity and discussion of the consistency of the model with experimental
observations will appear elsewhere [3].
We focus on modelling computations performed by ‘novelty’ neurons, the ∼10% of

perirhinal neurons that respond strongly to the 5rst presentations of novel stimuli but
only brie;y or weakly to presentations of previously seen stimuli [13].

2. Description of the model

For ease of explanation and mathematical analysis, the network is described using
a simple model of neurons which does not consider changes of neurons’ membrane
potentials in time. We assume that each visual stimulus is represented by a speci5c pat-
tern of activity of the neurons providing input to the familiarity discrimination network
and each of these input neurons may be in one of two states: active or inactive.
Fig. 1 shows the synaptic plastic changes for the anti-Hebbian model. After presenta-

tion of a novel stimulus the synaptic weights of connections from active input neurons
are decreased due to homo-synaptic long-term depression, which is known to exist in
the perirhinal cortex [7]. This synaptic modi5cation decreases the sum of the synap-
tic strengths (weights) of the novelty neuron. Hence to maintain the neuron’s overall

Fig. 1. Synaptic plasticity in the anti-Hebbian model. In each panel, the triangle represents an excitatory
novelty neuron [13] and lines on the left side of each panel denote inputs to the network, which are axons
of neurons whose activity encodes visual stimuli. “Spikes” over the lines indicate that the corresponding
neuron is active, a lack of spikes that it is inactive. The thickness of the lines indicates the strength of the
synaptic connections. The left panel illustrates synaptic weights and neuronal responses for a novel stimulus;
the right panel when this stimulus is presented again (i.e. is familiar).
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excitability, the synaptic weights of connections from inactive input neurons must be
increased (see Fig. 1). This increase may be mediated by homeostatic mechanisms
that act to maintain average neuronal activity and thus promote network stability (they
have been reported in cultures and slices of cortical neurons; for review see [12]).
When the same stimulus is presented again, the membrane potential of the novelty
neuron will be lower (because the weights of synapses of inputs that were active for
this stimulus have been reduced) and the novelty neuron will be inactive (or, more
generally, less active). Thus the neuron responds more strongly to novel than familiar
stimuli.
The anti-Hebbian model includes a single layer of novelty neurons receiving pro-

jections from the input neurons. If each novelty neuron makes its own decision about
stimulus familiarity, the overall response (“answer”) of the network is encoded in the
population activity of the novelty neurons. It is necessary to ensure that individual
novelty neurons remain independent assessors of familiarity if the information storage
capacity of the network is to be maximised [2]. Otherwise, should all the novelty
neurons be active after the presentation of each of a series of novel stimuli, then the
synaptic weights of each of the novelty neurons would be modi5ed in the same way,
and hence all the novelty neurons would come to have highly correlated weights. Thus,
eventually, they would all be active or inactive together and the whole network would
have the same capacity as a single novelty neuron. To avoid this problem, the number
of novelty neurons active for any one stimulus must be limited, i.e. only a subset of
novelty neurons must respond to any given stimulus. This limitation of the number of
active novelty neurons is achieved in the model by inhibitory competition: only the
fraction of neurons with the highest membrane potentials are selected to be active, the
activity of the remainder being suppressed by inhibition, and only these most active
neurons have their weights modi5ed [10]. For mathematical details of the simulated
version of the model see Appendix A.

3. Storage capacity for correlated responses of input neurons

Storage capacity is de5ned as the number of presented stimuli for which a network
can discriminate familiarity with an accuracy of 99% [2]. To ease explanation, the
capacity was established using simple binary patterns. Further, sparse coding was not
assumed (the probability of each input neuron being active was 50%). However, the
sparseness of coding does not have a great in;uence on the capacity of familiarity
discrimination networks [4].
The simple binary patterns were generated so that (the modulus of) the correlation

between each pair of input neurons was constant. Thus at the beginning of a simulation
a binary template pattern �temp was generated randomly. All the patterns �� were biased
towards �temp, such that the probability of ��=�temp equalled 1=2+1=2b, where b is the
parameter controlling bias. Additionally, to keep the level of activity constant across the
neurons, at random moments in time the template was inverted, i.e. each bit in template
was switched (�temp ← −�temp). For patterns generated in this way, the correlation rij
between a pair of inputs was equal to b2 or −b2.
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Fig. 2. The capacities of familiarity discrimination networks for correlated patterns of a fully connected (a)
Hebbian [2] and (b) anti-Hebbian model. x-axes: square root of |rij|, i.e. b; y-axes: capacity P. Methods
of calculating capacity as in [2]. For each network and for each number of neurons N , the familiarity
discrimination error was estimated for diNerent numbers of stored patterns P, and the capacity Pmax was
taken as the maximum number of stored patterns P, for which the error rate was 6 1%. For given N and
P, the discrimination error was estimated as follows. During each test, P patterns were presented to the
network, and then accuracy tested on all the presented (stored) patterns and equal number of novel patterns
(generated in the same way as the stored patterns). These tests were repeated until the network had been
tested with 5000 stored patterns and 5000 novel patterns, e.g. for P=100, the tests were repeated 50 times.
The average accuracy over the tests is plotted. Grey curves show theoretical predictions of capacity according
to the equations below the charts. The equation for capacity of the Hebbian model is derived in [1], the
anti-Hebbian in [3].

Fig. 2a shows that the capacity of the model [2] based on Hebbian learning (these
simulations are described in [1]) decreases very markedly even when the correlation
is very small. Fig. 2b shows that correlation reduces the capacity of the anti-Hebbian
model far less than the network based on Hebbian learning.
Furthermore, for familiarity discrimination networks based on Hebbian learning the

in;uence on capacity of correlation between responses of input neurons increases when
the size of the network grows. By contrast, for the anti-Hebbian model the eNect of cor-
relation on capacity decreases with increasing network size. Hence for large networks,
the anti-Hebbian model achieves a capacity much greater than any of the networks
based on Hebbian learning when there are even very small correlations between the
responses of the input neurons.

4. Discussion

The diNerence in capacities of the models based on Hebbian and anti-Hebbian learn-
ing may be explained intuitively by the fact that the Hebbian models have a natural
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tendency to extract features; hence they focus on elements common to all the input
patterns (i.e. features). By contrast, the anti-Hebbian model focuses on elements char-
acteristic to individual patterns rather than their common features (for more details and
formal explanation see [3]).
The consistency of the anti-Hebbian and other models with the results of experimen-

tal observations is compared in [3]. In [3] we also estimate the capacity of putative
networks of novelty neurons in the human perirhinal cortex. These estimations show
that if perirhinal cortex worked akin to the anti-Hebbian model, it could discriminate
familiarity for up to thousands of times more stimuli that if it worked according to the
models based on Hebbian learning.

Appendix A. Details of the model

The notation in the Appendix follows that of previous work on auto-associative
memories [9]. Denote the active state of a neuron by 1, and the inactive by −1.
Denoting the inactive state by −1 rather than 0 simpli5es the calculation of capacity
for familiarity discrimination networks without changing their capacity (see [2]). Also,
it is assumed that the probability of an input neuron being active is 50%.
Assume that a network consists of N novelty neurons, receiving information from

N input neurons whose activity pattern represents a visual stimulus. For simplicity
assume that each novelty neuron is connected to all the input neurons and denote the
strength of the synaptic connection between input neuron j and novelty neuron i by
wij. Denote the activity of input neuron j by xj, and de5ne the membrane potential of
novelty neuron i as:

hi =
N∑

j=1

wijxj: (A.1)

In the anti-Hebbian model, the number of active novelty neurons is limited by com-
petition. After presentation of a stimulus, the membrane potentials of novelty neurons
are calculated according to Eq. (A.1) and a threshold set such that exactly half of
the novelty neurons with the highest membrane potentials are allowed to be active.
In a real network such selection of a proportion of the most active neurons may
be achieved by inhibition and competition (see e.g. [10]). The pattern of activity of
the novelty neurons is denoted by y, i.e. yi = 1 if neuron i has membrane potential
among N=2 highest membrane potentials in the network, and yi = −1 otherwise. The
weights of the active novelty neurons are updated according to the rule (illustrated in
Fig. 1):

Pwij =− �
2N

(yi + 1)xj: (A.2)

In Eq. (A.2), � denotes the learning rate—a parameter determining the magnitude of
weight modi5cation; its optimal value depends on N (see [3]).
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The initial network response is equal to the response (proportional to the membrane
potential) of neurons selected to be active:

d(x) =
N∑

i=1

 ihi: (A.3)

As the detailed explanation of how such a function may be calculated by a biologi-
cally plausible neural network is long, it is not given here, but is in [1]. Due to the
anti-Hebbian weight modi5cations produced by previous occurrences, d is lower for
familiar patterns than for novel. The familiarity of stimuli may be discriminated re-
liably by evaluating d. The familiarity discrimination threshold may be taken as the
middle value between the average decision function for novel and for familiar stimuli.
For simplicity, during the simulations, the biologically plausible network computing d
was not simulated explicitly, but instead the familiarity of a stimulus was evaluated by
the simulator program computing function d of Eq. (A.3).
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