
A Novel Modular Neural Architecture for
Rule-Based and Similarity-Based Reasoning

Rafal Bogacz and Christophe Giraud-Carrier

Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Rd

Bristol BS8 1UB, UK
{bogacz,cgc}@cs.bris.ac.uk

Abstract. Hybrid connectionist symbolic systems have been the subject
of much recent research in AI. By focusing on the implementation of high-
level human cognitive processes (e.g., rule-based inference) on low-level,
brain-like structures (e.g., neural networks), hybrid systems inherit both
the efficiency of connectionism and the comprehensibility of symbolism.
This paper presents the Basic Reasoning Applicator Implemented as a
Neural Network (BRAINN). Inspired by the columnar organisation of the
human neocortex, BRAINN’s architecture consists of a large hexagonal
network of Hopfield nets, which encodes and processes knowledge from
both rules and relations. BRAINN supports both rule-based reasoning
and similarity-based reasoning. Empirical results demonstrate promise.

1 Introduction

Over the past few years, the mainly historical, and arguably unproductive, divi-
sion between psychological and biological plausibility has narrowed significantly
through the design and implementation of successful hybrid connectionist symbo-
lic systems. Rather than committing to a single philosophy, such systems draw on
the strengths of both biology and psychology, by implementing high-level human
cognitive processes (e.g., rule-based inference) within low-level, brain-like struc-
tures (e.g., neural networks). Hence, hybrid systems inherit the characteristics
of both traditional symbolic systems (e.g., expert systems) and connectionist
architectures, including:

– Complex reasoning
– Learning and generalisation from experience
– Efficiency through massive parallelism

This paper presents the Basic Reasoning Applicator Implemented as a Neural
Network (BRAINN). The original description of BRAINN is in [1]. The archi-
tecture of BRAINN mimics the columnar organisation of the human neocortex.
It consists of a large hexagonal network of Hopfield nets [7] in which both rules
and relations can be encoded in a distributed fashion. Each relation is stored
in a single Hopfield net, whilst each rule is stored in a set of adjacent Hop-
field nets. Through systematically orchestrated relaxations, BRAINN combines

S. Wermter and R. Sun (Eds.): Hybrid Neural Systems, LNAI 1778, pp. 63–77, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

64 R. Bogacz and C. Giraud-Carrier

rule-based reasoning typical of expert systems with similarity-based reasoning
typical of neural networks. Hence, BRAINN supports both monotonic reasoning
and several forms of common-sense (non-monotonic) reasoning [10].

The paper is organised as follows. Section 2 details the BRAINN architecture
and algorithms. Section 3 reports the results of a number of experiments with
BRAINN. Section 4 reviews related work, and section 5 concludes the paper and
outlines directions for future work.

2 BRAINN

BRAINN’s architecture is inspired by the columnar organisation of the human
neocortex [3]. The human neocortex is divided into minicolumns (Ø0.03mm),
i.e., groups of neurons gathered around dendrite bundles. Minicolumns create
a hexagonal network, and are, in turn, organised in hexagonal macrocolumns
(Ø0.5mm). The axons of some pyramidal neurons have an unusually high num-
ber of synapses within about 0.5mm of their soma. Simultaneous activation of
neurons, in a 0.5mm radius, is thus sometimes observed. These neurons excite
one another and can in turn recruit additional neurons, since the adjacent neu-
rons receive activation from two or more neurons, as shown in Figure 1.

Fig. 1. Neuron Recruitment

Calvin [3] speculates further that newly recruited neurons can subsequently
recruit others, so that the pattern of activation of one or two macrocolumns
can spread through the whole network. He argues that this process is especially
relevant to short term memory phenomena.

2.1 Knowledge Implementation

BRAINN’s underlying neural network architecture supports the encoding of both
relations and if-then rules, as detailed in the following sections.

Relations The relations considered here can be represented as triples of the
form <Object, Attribute, Value>. In BRAINN, each component of the triple is
represented by a unique pattern. The pattern is a sequence of bits of constant

A Novel Modular Neural Architecture 65

length N , where each bit may have value -1 or +1. Hence, each relation can be
stored in a Hopfield network with 3N units. Figure 2 shows one such network
for N = 4. The activations of units x1 to xN correspond to the binary repre-
sentation of the object, the activations of units xN+1 to x2N correspond to the
binary representation of the attribute and the activations of units x2N+1 to x3N

correspond to the binary representation of the value.

Object

AttributeValue

x1

x2
xN

xN+1

x2Nx2N+1

x3N

 cat drinks milk

1 -1 -1 1 -1 -1 1 1 1 -1 1 -1

Legend
- unit with activation –1
- unit with activation +1

Fig. 2. Relation Encoding

For simplicity, Hopfield networks encoding relations are referred to as assem-
blies, which work as associative memories. After delivering two components of
a relation to an assembly, the third one may be retrieved. The weights of the
network are set using either the Hebb rule or the Perceptron rule [5], as detailed
below.

Weights Setting with the Hebb Rule. Upon creation of the network, all weights
are initialised to 0. For each new triple to remember, the binary representations
of its components are delivered to the corresponding neurons in the assembly
as shown in Figure 2. Then, the weights wij between units i and j (i 6= j) are
updated according to equation 1.

wij ← wij + xixj (1)

Weights Setting with the Perceptron Rule. The Perceptron rule is similar
to the Hebb rule, but it increases storage capacity and reduces susceptibility
to pattern correlation [5]. With the Perceptron rule, the weights wij to unit i
are modified according to equation 1 only if the output xt+1

i of unit i (as per
equation 2 below), is different from the bit value in the triple’s representation xt

i.
In addition, learning is iterative. Patterns are presented repeatedly until they are
stored correctly or the learning time exceeds a pre-defined limit. The learning
algorithm is shown in Figure 3.

The network functions as an associative memory, using the principle of re-
laxation to retrieve relations. A pattern is delivered to the network and, during
relaxation, unit i changes its state xi according to equation 2 until the network
reaches a stable state.

xt+1
i = sgn(

3N∑

j=1

wijx
t
i) (2)

66 R. Bogacz and C. Giraud-Carrier

Initialise all weights to 0
Repeat

– For each triple to remember
1. Deliver triple’s elements to the network’s units xi

2. For each unit i
(a) Compute activations xt+1

i

(b) If xt+1
i 6= xt

i Then update weights: wij ← wij + xt
ix

t
j(j 6= i)

Until no updates are made or time is out

Fig. 3. Weight Setting with Perceptron Rule

The Hopfield network stabilises on the stored pattern most similar to the
delivered one or sometimes in a random state called a spurious attractor. In
BRAINN, all of the questions asked by the user take the form of a triple <Object,
Attribute, Value>, where one component is replaced by a question mark (e.g.,
<mouse, eats, ?>). The network then retrieves the triple’s missing component
based on knowledge of the other two. The units corresponding to the unknown
component are set to 0. If the question is delivered to an assembly remembe-
ring the expected relation, then, after relaxation, the units corresponding to the
unknown component are equal to the binary representation of the relation’s mis-
sing element. If the network does not store the triple, it stabilises in a spurious
attractor or another remembered triple. Examples are in section 2.3.

Given the above mapping of relations to triples, it is possible that an object
may have more than one value for a single attribute, e.g., <cat, eats, whiskas>
and <cat, eats, mouse>. To solve this problem, such triples are stored in distinct
assemblies. Details are described in section 2.4.

If-Then Rules The rules that BRAINN uses are traditional if-then rules, where
the left-hand side (LHS) consists of a conjunction of conditions and the right-
hand side (RHS) is a single condition, for example:

IF <soil, is, sandy> AND <soil, humus_level, high>
THEN <soil, compaction, high>

As with relations, conditions are represented by triples of the form <Object,
Attribute, Value> and subsequently stored in assemblies of the form described
in section 2.1.1. The various assemblies representing the conditions of a rule can
then be connected into a network of assemblies that encodes the rule. Figure
4 shows such a network for the above rule. In the network, there are connec-
tions between each unit from the LHS assemblies and each unit from the RHS
assembly. The weights between assemblies are set according to the Hebb rule.
Therefore, if one knows one side of the rule, one can retrieve the other.

To accommodate rules with varying numbers of conditions in LHS and to
provide a uniform network topology for both rules and relations (rather than a
set of disconnected networks), assemblies are organised into a large hexagonal

A Novel Modular Neural Architecture 67

is

soil

sandy

soil

humus_level

soil

high

compaction
high

For simplicity, only
one neuron per element
of relation is shown.

Fig. 4. Rule Encoding in Network

network as shown in Figure 5. With such an architecture, each rule may have a
maximum of 6 conditions in its LHS. Larger numbers of conditions in LHS can,
of course, be handled by chaining rules appropriately, using new variables (e.g.,
IF A AND B AND C THEN D can be rewritten as IF A AND B THEN E, and
IF E AND C THEN D).

Each line between assemblies
denotes connections between
all units from the assemblies

Fig. 5. Hexagonal Network of Assemblies

When reasoning with rules, BRAINN implements backward chaining. Hence,
the network retrieves the LHS of a rule upon delivery of its RHS. The following,
along with Figure 6, details how this takes place in the network. For the sake of
argument, assume that a rule consists of four conditions in its LHS. The RHS
is stored in one assembly and the four conditions from the LHS are stored in
adjacent assemblies. Upon activation of the assembly corresponding to the RHS,
the network must retrieve the four conditions of the LHS.

RHS

LHS
LHS

LHS

LHS

RHS

RHS

RHS

RHS

RHS

RHS

RHS
RHS

RHS

RHS

RHS

RHS

LHS

LHS

LHS

LHS

LHS

LHS
RHS

LHS
LHS

LHS

LHS

a) b) i. ii.

iii. iv.

Fig. 6. Rule Retrieval: a) Storage; b) Retrieval - i) RHS sent to all assemblies,
ii) Relaxation, iii) LHS sent to adajacent assemblies and iv) Relaxation

68 R. Bogacz and C. Giraud-Carrier

First, the RHS is delivered to all the assemblies in the hexagonal network.
Once all of the Hopfield networks have relaxed, only the assembly storing the
RHS has stabilised on the delivered pattern, since for that assembly, delivered
and stored patterns are the same. Then, the assembly storing the RHS sends
its pattern (vector of activation) to all six adjacent assemblies. Each adjacent
assembly receives the pattern vector of the RHS assembly multiplied by the
matrix of weights between the RHS assembly and itself. All of the adjacent
assemblies relax after receiving the vector. In the case of the four LHS assemblies,
the vector received is one of the patterns remembered in the local Hopfield
network, so these assemblies will be stable. The other two assemblies will not
be stable and will thus change their state. Moreover, the four LHS assemblies
now send their patterns back to the RHS assembly. The RHS assembly receives
these patterns multiplied by the matrix of weights between the LHS assemblies
and itself. Thus, the pattern received by the RHS assembly is equal to its own
pattern of activation. A kind of resonance is achieved, allowing the retrieval of
the correct LHS.

Note that LHS assemblies recruited by the aforementioned process are im-
plicitly conjoined, i.e., the left-hand side of the rule is the conjunction of the
conditions found in all of the LHS assemblies retrieved. To avoid confusion du-
ring backward chaining when several rules have the same right-hand sides (e.g.,
IF A AND B THEN C, and IF D THEN C), the right-hand sides are stored in
different assemblies.

Rules with Variables The rules discussed so far are essentially propositional.
It is often useful, and even necessary, to encode and use more general rules, which
include variables. To reason in the presence of such rules, an effective way of
binding variables is required. In BRAINN, variable binding is achieved by using
special weight values between LHS and RHS assemblies, as shown in Figure 7
for the rule IF <&someone, drinks, milk> THEN <&someone, is, strong>. Let
&X be the variable. Then, the weights between the units representing &X in
LHS and the units representing &X in RHS are equal to 1, whilst the weights
between the units representing &X and all other units are equal to 0.

 Legend

 weights equal to 1

 weights set up
 according to Hebb rule

 If there is no line between two
 units, the weight is equal to 0

	VRPHRQH

GULQNV

PLON

	VRPHRQH

LV VWURQJ

Fig. 7. Weight Setting for a Simple Rule

A Novel Modular Neural Architecture 69

With such a set of weights, the pattern for the variable is sent between assem-
blies without any modifications nor interactions with the rest of the information
in the assembly. The weights inside the LHS assemblies and the RHS assembly
must also satisfy similar conditions. That is, the weight of self-connection for
all units representing a variable is equal to 1, whilst the weight between each
unit representing a variable and any other unit is equal to 0. These latter con-
ditions guarantee the stability of the assembly, which is critical to the reasoning
algorithm.

2.2 Functional Overview

Although BRAINN’s knowledge implementation is inspired by biological consi-
derations, its information processing mechanisms are not biologically plausible.
A high-level view of BRAINN’s overall architecture is shown in Figure 8.

Short Term Memory Reasoning
 Goal

Long Term Memory

 (Hexagonal network)

Control
Process

Fig. 8. BRAINN’s Architecture

The system’s knowledge (i.e., rules and relations) is stored in the Long Term
Memory (LTM). Temporary, run-rime information is stored in the Short Term
Memory (STM) and the reasoning goal is stored in a dedicated variable. Rea-
soning is effected by a form of backward chaining. The following sections detail
the reasoning mechanisms implemented by the Control Process.

2.3 Rule-Based Reasoning

To facilitate reasoning, BRAINN’s assemblies are labelled with the type of infor-
mation they store: SN for a (semantic net’s) relation, LHS for a rule’s left-hand
side, and RHS for a rule’s right-hand side. The label is represented by a unique
sequence of 4 bits, stored in a few additional units in each assembly. Hence, each
assembly actually consists of 3N + 4 units.

As previously stated, BRAINN’s rule-based reasoning engine implements a
form of backward chaining. The pseudocode for the algorithm is described in
Figure 9.

If more than one rule can be used, the rules are sorted by ascending num-
ber of conditions in their LHS. The algorithm checks that an LHS condition is
satisfied by (recursively) asking the network to produce its value. For example,

70 R. Bogacz and C. Giraud-Carrier

ApplyRule(question)

1. Deliver question to all assemblies
2. Relax the network
3. If there is a SN assembly containing question Then return

corresponding answer
4. Else

(a) For all RHS assemblies containing question
i. Retrieve LHS of rule
ii. Sort rules by ascending number of LHS conditions

(b) For all rules in above order
i. Load rule to STM (both RHS and LHS assemblies)
ii. For each LHS condition of rule

– If LHS.value 6= ApplyRule(<LHS.object, LHS.attribute, ?>))
Then try next rule

iii. Give the answer from RHS of rule

Fig. 9. BRAINN’s Backward Chaining Algorithm

the algorithm checks the condition sky has colour blue by asking the question
<sky, has colour, ?>. Although adequate for single-valued attributes, this may
cause problems for multi-valued attributes.

The following illustrates the working of the rule application algorithm on a
simple reasoning task. Assume that BRAINN’s knowledge base consists of the
following relation and rule:

<Garfield, drinks, milk>
IF <&someone, drinks, milk> THEN <&someone, is, strong>

For simplicity, also assume that the hexagonal network consists of only 3 assem-
blies, organised as shown in Figure 10. The divisions in the assemblies represent
subsets of units, one for each element of information (i.e., object, attribute, value
and label). Also assume that the relation is stored in the upper assembly and
the rule in lower and right assemblies as shown in Figure 10.

Fig. 10. Simple Hexagonal Network

A Novel Modular Neural Architecture 71

The simplest question that the user can ask, is about what Garfield drinks,
i.e.,

<Garfield, drinks, ?>

The algorithm delivers the question to all the assemblies. The network, after
relaxation, is shown in Figure 11. A label over a division denotes that the ac-
tivation of units in that division is equal to the binary representation of that
label. If there is no label over a division, the network is in a spurious attractor.

Fig. 11. Network after Relaxation: <Garfield, drinks, ?>

After relaxation, the bottom assembly is in a spurious attractor, the right
assembly has settled to one of the patterns stored in that assembly, and the top
assembly has settled to the relation (tag is SN) containing the question. Hence,
the system gives the answer from this assembly, i.e., milk.

The following question, which asks what Garfield is, causes BRAINN’s rule-
based reasoning mechanisms to be applied.

<Garfield, is, ?>

As before, the question is delivered to all the assemblies. The network, after
relaxation, is shown in Figure 12.

Fig. 12. Network after Relaxation: <Garfield, is, ?>

Two assemblies are empty, because the network has settled in spurious attrac-
tors. Sequences of bits in those assemblies have no meaning. The lower assembly

72 R. Bogacz and C. Giraud-Carrier

stores the RHS condition, which contains the question. Neighbours of that as-
sembly receive its pattern of activation multiplied by the matrices of weights
between assemblies. The resulting network is shown in Figure 13.

Fig. 13. Network after Retrieving LHS of Rule

The upper assembly is clear because the weights between the upper and lower
assemblies are equal to zero (no rule is stored). In the right assembly, the LHS
has been retrieved. The rule, IF <Garfield, drinks, milk> THEN <Garfield, is,
strong>, is written to STM and the question, <Garfield, drinks, ?>, is delivered
to the network. The behaviour of the network for this question is as described
above. The value returned is the same as the value in the LHS of the retrieved
rule, hence the answer for the question, <Garfield, is, ?>, is given from the RHS
of the rule, i.e., strong.

Currently, the system cannot answer questions involving variables (e.g., <?,
is, strong>) since, after relaxation, the assembly which stores the RHS has one
part (i.e., the object) empty or without meaning. Further work is necessary to
overcome this limitation.

2.4 Similarity-Based Reasoning

In addition to encoding relations and rules as described in section 2.1, BRAINN
learns and reasons from similarity, as shown below. Consider the knowledge
database shown in Figure 14.

Fig. 14. Sample Knowledge Base

A Novel Modular Neural Architecture 73

The database contains some information about cars, planes and lorries. The
user may ask “What is a lorry used for travelling on?” The database does not
contain the answer explicitly. However, lorries and cars have more attributes in
common than lorries and planes. In this sense, a lorry is more similar to a car
than to a plane. Hence, the system can guess that a lorry is for travelling on the
ground like a car.

To increase the capacity of the network, BRAINN generally stores new infor-
mation in the assembly where the most similar information is already present.
Two mechanisms are then available for similarity-based reasoning, one using on
a voting algorithm and the other relying on Pavlov-like connections.

Voting Algorithm The voting algorithm assumes that all the relations with
the same object are stored in the same assembly. The algorithm to retrieve the
value of attribute Aquery for object Oquery is described in Figure 15.

All the relations with object Oquery are retrieved from memory
(one-by-one from the same assembly, using relaxation)
For each retrieved relation <Oquery, Aretrived, Vretrived>

1. Aretrived and Vretrived are delivered to each assembly
2. For each assembly C

– If ∃Osimilar s.t. C stores a relation <Osimilar, Aretrived,
Vretrived> Then
• If ∃Vsimilar s.t. C stores a relation <Osimilar, Aquery,

Vsimilar> Then vote for Vsimilar

Choose the value with the largest number of votes as the answer

Fig. 15. Voting Algorithm

For example, assume BRAINN implements the knowledge database presen-
ted in Figure 14. If asked <lorry, is for travelling, ?>, BRAINN would assert
on ground since lorry shares two properties with car (made of metal + has
wheels = 2 votes for on ground) and only one with plane (made of metal =
1 vote for in air).

Pavlov-like Connections The algorithm based on Pavlov-like connections as-
sumes that all the relations with the same attribute and the same value are
stored in the same assembly, whilst relations with the same attribute but diffe-
rent values are stored in different assemblies. The hexagonal network is overlaid
with a fully connected mesh. These additional connections between all the as-
semblies capture co-occurring features (e.g., if some values of some attributes
occur together for one object, then some of the assemblies are active together).
The strengths of these Pavlov’s connections represent how often assemblies are
active together. When a new relation is learnt then:

74 R. Bogacz and C. Giraud-Carrier

1. The object from this relation is sent to all the assemblies
2. The assemblies are relaxed (only the assemblies that remember any infor-

mation about the object are in “resonance”)
3. The strength of all the Pavlov’s connections between the assembly where the

new relation is stored and the assemblies in resonance is increased

Figure 16 shows the Pavlov’s connections for the knowledge database of Fi-
gure 14. Only non-zero connections are shown. Line thickness is proportional to
strength.

Fig. 16. Pavlov-like Connections

The algorithm to answer the question <Oquery, Aquery, ?> is in Figure 17.

The pattern of the object Oquery is sent to all the assemblies and all
the assemblies that remember any information about the object Oquery are
activated
Pavlov’s connections are used to determine which value of the attribute
Aquery usually occurs with the set of features of the object Oquery

Fig. 17. Pavlov Algorithm

For example, consider the behaviour of the system for the question: <lorry,
is for travelling, ?>. The object lorry is sent to all the assemblies and two as-
semblies storing information about the lorry are activated (see Figure 16). The
assembly remembering the relation <?, is for travelling, on the ground> recei-
ves activation from two assemblies and the assembly remembering the relation
<?, is for travelling, in the air> from one assembly only, hence the system will
guess that the answer is: on the ground.

The advantage of the voting algorithm is its simplicity and relatively low
computational cost (computations are strongly parallel). The Pavlov-like algo-
rithm is slightly more involved, but has very interesting feature - connections

A Novel Modular Neural Architecture 75

between features are remembered even if the particular cases are forgotten (also
a feature of human learning). Therefore, such connections could be used for rule
extraction.

3 Empirical Results

BRAINN is implemented in C++ under Windows, with a GUI displaying traces
of the network’s behaviour (see http://www.cs.bris.ac.uk/ bogacz/brainn.html).
Results of preliminary experiments with BRAINN follow.

3.1 Classical Reasoning Protocols

Several tasks from the set of Benchmark Problems for Formal Nonmonotonic
Reasoning [8] were presented to BRAINN. The system incorporates the pre-
mises and correctly derives the conclusions for problems A1, A2, A3, A4, B1
and B2, which include default reasoning, linear inheritance and cancellation of
inheritance.

3.2 Sample Knowledge Base

BRAINN was also tested with a more realistic knowledge base in the domain
of soil science. This knowledge base consists of 20 rules with up to 2 conditions
in the LHS (e.g., IF <&soil, is, clay> AND <&soil, humus level, high> THEN
<&soil, compaction, low>) and chains of inference of length 3 at most.

The following is an example of BRAINN’s reasoning after “learning” the soil
science knowledge base.

User inputs: <My_soil, colour, brown>
<My_soil, weight, heavy>

User query: <My_soil, compaction, ?>

The question is sent to all the assemblies. After relaxation, no SN assembly is
found with the answer, but there is a RHS assembly that contains an answer.
This RHS assembly belongs to the rule, IF <&soil, Fe level, high> AND <&soil,
weight, heavy> THEN <&soil, compaction, high>. The RHS assembly sends its
weight-multiplied pattern to all of its neighbours. After relaxation the two LHS
neighbours are found. The rule is retrieved and written to STM. Then, the
first condition, <My soil, Fe level, high>, is sent to all the assemblies. Again,
no SN assembly is found, but the RHS assembly of the rule, IF <&soil, colour,
brown> THEN <&soil, Fe level, high>, is activated. This second rule is retrieved
(as above) and written to STM. The condition of the rule, <My soil, colour,
brown>, is then sent to all the assemblies. After relaxation, one of the assemblies
still contains the condition so that <My soil, Fe level, high> is confirmed. The
system sends the second condition, <My soil, weight, heavy>, of the first rule
from STM to all the assemblies. After relaxation one of assemblies contains the
condition. Both conditions of the first rule are now confirmed and the system
produces the answer, high, from the RHS of the first rule. Although BRAINN
behaves as expected, the network is large (36 assemblies of 29 units each).

76 R. Bogacz and C. Giraud-Carrier

4 Related Work

The BRAINN system is inspired by some of Hinton’s early work [6]. In Hinton’s
system, as in BRAINN, relations are implemented in a neural network in a
distrributed fashion. However, a different network architecture is used.

Many hybrid symbolic connectionist systems have been proposed. One of
the first such systems is described in [14]. That system imitates the structure
of a production system and is made up of several separate modules (working
memory, production rules and facts). With its distributed representation in all
of the modules, the system can match variables against data in the working
memory module by using a winner-take-all algorithm. The system has complex
structures and is computationally costly. Moreover, it is restricted to performing
sequential rule-based reasoning.

CONSYDERR [10] is a connectionist model for concept representation and
commonsense reasoning. It consists of a two-level architecture that naturally
captures the dichotomy between concepts and the features used to describe them.
However, it does not address learning (how such a skill could be incorporated is
also unclear) and is limited to reasoning from concepts.

CLARION [13], like CONSYDERR, uses two modules of information pro-
cessing. One module encodes declarative knowledge in a localist network where
the nodes that represent a rule’s conditions are connected to the node represen-
ting that rule’s conclusion. The other module encodes procedural knowledge in a
layered sub-symbolic network. Given input data, decisions are reached through
processing in and interaction between both modules. CLARION also allows rule
extraction from the procedural to the declarative knowledge module.

ScNets [4] aim at offering an alternative to knowledge acquisition from ex-
perts. Known rules may be pre-encoded and new rules can be learned inductively
from examples. The representation lends itself to rule generation but the con-
structed networks are complex. Finally, ASOCS [9] are dynamic, self-organizing
networks that learn incrementally, from both examples and rules. ASOCS are
massively parallel networks, but are restricted to binary classification.

A number of other relevant systems are described in [12]. A thorough review
of the literature on hybrid symbolic connectionist models is in [11] and a dynamic
list of related papers is in [2].

5 Conclusion

This paper presents a hybrid connectionist symbolic system, called BRAINN
(Basic Reasoning Applicator Implemented as a Neural Network). In BRAINN,
a hexagonal network of Hopfield networks is used to store both relations and
rules. Through systematically orchestrated relaxations, BRAINN supports both
rule-based and similarity-based reasoning, thus allowing traditional (monotonic)
reasoning, as well as several forms of common-sense (non-monotonic) reasoning.
Preliminary experiments demonstrate promise.

Future work will focus on developing Pavlov’s similarity based algorithm by
implementing rules extraction and integrating similarity-based and rule-based

A Novel Modular Neural Architecture 77

reasoning into one algorithm. In addition, biological plausibility will be improved
by incorporating Goal and STM in the hexagonal network and using local rules
to control the behaviour of each assembly and determine the global reasoning
process.

Acknowledgements

This work is supported in part by an ORS grant held by the first author. The
soil science knowledge base was donated by Adam Bogacz.

References

1. Bogacz, R. and Giraud-Carrier, C. (1998). BRAINN: A Connectionist Approach to
Symbolic Reasoning. In Proceedings of the First International ICSC Symposium on
Neural Computation (NC’98), 907-913.

2. Boz, O. (1997). Bibliography on Integration of Symbolism with Connectio-
nism, and Rule Integration and Extraction in Neural Networks. Online at
http://www.lehigh.edu/ ob00/integrated/references-new.html.

3. Calvin, W. (1996). The Cerebral Code. MIT Press.
4. Hall, L.O. and Romaniuk, S.G. (1990). A Hybrid Connectionist, Symbolic Lear-

ning System. In Proceedings of the National Conference on Artificial Intelligence
(AAAI’90), 783-788.

5. Herz, J., Krogh, A. and Palmer, R. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley.

6. Hinton, G. (1981). Implementing Semantic networks in Parallel Hardware. In Hin-
ton, G. and Anderson, J. (Eds.), Parallel Models of Associative Memory. Lawrence
Erlbaum Associates, Inc.

7. Hopfield, J. and Tank, D. (1985). Neural Computation of Decisions in Optimization
Problems. Biological Cybernetics, 52:141-152.

8. Lifschitz, V. (1988). Benchmark Problems for Formal Nonmonotonic Reasoning. In
Proceedings of the Second International Workshop on Non-Monotonic Reasoning,
LNCS 346:202-219.

9. Martinez, T.R. (1986). Adaptive Self-Organizing Networks. Ph.D. Thesis (Tech.
Rep. CSD 860093), University of California, Los Angeles.

10. Sun, R. (1992). A Connectionist Model for Common Sense Reasoning Incorporating
Rules and Similarities. Knowledge Acquisition, 4:293-331.

11. Sun, R. (1994). Bibliography on Connectionist Symbolic Integration. In Sun, R.
(Ed.), Computational Architectures Integrating Symbolic and Connectionist Proces-
sing, Kluwer Academic Publishers.

12. Sun, R. and Alexandre, F. (Eds.) (1995). Working Notes of IJCAI’95 Workshop
on Connectionist-Symbolic Integration.

13. Sun, R. (1997). Learning, Action and Consciousness: A Hybrid Approach Toward
Modeling Consciousness. Neural Networks, 10(7):1317-1331.

14. Touretzky, D. and Hinton, G. (1985). Symbols Among the Neurons: Details of
a Connectionist Inference Architecture. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’85), 238-243.

	Introduction
	BRAINN
	Knowledge Implementation
	Functional Overview
	Rule-Based Reasoning
	Similarity-Based Reasoning

	Empirical Results
	Classical Reasoning Protocols
	Sample Knowledge Base

	Related Work
	Conclusion

