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Bifurcation analysis points towards the source
of beta neuronal oscillations in Parkinson’s

disease
Dr Alejo J Nevado-Holgado, Dr John R. Terry , Dr Rafal Bogacz

Abstract—Parkinson disease is the second most common
neurodegenerative disorder after Alzheimer, affecting 0.16% of
the population in the USA1. This disease is most common in the
elderly, what makes it a prominent health problem in developed
countries, where the elder population is expected to importantly
increase in the future. The mechanism generating the disease is
the death of dopaminergic neurons in the substantia nigra pars
compacta (SNc), a small brain region from the brain stem.
These neurons release the neurotransmitter dopamine to the
basal ganglia, a large and complex brain structure implicated
in motor control and reinforcement learning. Once SNc neurons
have died, the basal ganglia starts showing prominent features
of malfunction, and the characteristics symptoms of Parkinson’s
disease began to be observed in the patient (i.e. general difficulty
or inability to execute motor movements and limb tremor,
among others). Modern theory of Parkinson’s disease focuses
on the abnormal brain activity oscillations observed in the
basal ganglia, which are consistently observed in parkinsonian
patients and correlate with their symptoms. This paper develops
a mathematical model of the basal ganglia, which reproduces
the experimentally recorded neuronal activity of this brain
structure in health and disease. Studying this model numerical
and analytically, we draw conclusion on how and where these
oscillations are generated within the brain. If the conclusions of
this mathematical model are further confirmed experimentally,
we think they pave the way towards controlling such oscilla-
tions pharmacologically or through electrode stimulation in the
future.

I. INTRODUCTION

Parkinson’s disease is one of the most common neurode-
generative disorders, but the mechanisms giving rise to the
disease are not yet well understood. It is known that the
death of dopamine producing (i.e. dopaminergic) neurons
in the substantial nigra pars compacta (SNc, a brain stem
nucleus) closely correlates with the onset and advance of the
disease [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. These
dopaminergic cells project in the healthy brain to all major
nuclei of the basal ganglia, a complex network of nuclei
with important implications in motor control and decision
making [11], [12], [13], [14], [15], [8], [9] (see figure 1).
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Figure 1. Brain structures implicated in Parkinson’s disease - cortico basal
ganglia loop. The left side of the diagram shows the connectivity of the
basal ganglia network, while the right side indicates the names of each
brain structure. Brain structures which project excitatory axons are filled
with colours from the red spectrum, inhibitory structures with colours from
the blue spectrum and modulatory structures with green colours. Arrows
represent known axon projections, where the colour and the arrow head
shape indicate the nature of the implicated axons. Red with triangular head
represent excitatory fibers, blue with circular head represents inhibitory and
green with rhomboidal head, modulatory.

In the parkinsonian state, the absence of the dopaminergic
connections projecting to basal ganglia nuclei, produces an
imbalance in both the mean neuronal activity of these nuclei
and its oscillations [16], [17], [18], [7]. This double-sided
imbalance seems to perturb in some unknown manner the
correct functioning of the basal ganglia, which is no longer
able to select and execute the voluntary movements that are
coded in the motor cortex [19], [8]. Several decades ago, a
conceptual model was proposed to explain the relationship
between the mentioned physiological abnormalities of the
basal ganglia and the observed external symptoms of Parkin-
son’s disease [20], [3], [21], [7], [22]. This model focused
on explaining the imbalances in mean firing rates (i.e. the
measure of neuronal brain activity), and was able to explain
the early experimental observation made on parkinsonian
patients and animals.

More recent results have challenged the full validity of
this model, and recent studies are rather focusing on the
role of firing rate oscillations, whose frequency spectrum
consistently changes from the healthy to the diseased con-
dition [23], [16], [17], [18]. This frequency spectrum shows
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Figure 2. Comparison of model behaviour with experimental data obtained
from healthy monkeys. Vertical axes indicate firing rate in units of spikes
per second. A: Measures of STN’s and GPe’s mean firing rate in different
experimental situations. Grey crosses show the mean experimental values
and vertical lines indicate standard deviations. This is compared with the
mean firing rate of the model in the same situations indicated by black
circles. The numbers under the x-axis correspond to: (1) natural average
STN; (2) natural average GPe; (3) GPe while STN → GPe transmission
is blocked; (4) GPe while STN → GPe, GPe→ GPe and Str → GPe
transmission are blocked; (5) GPe while GPe→ STN is blocked; (6) GPe
while GPe→ GPe and Str → GPe are blocked. B: GPe firing rate after
single stimulation of STN [29]. Grey bars show experimental data and black
curve corresponds to the results of simulation. C: GPe firing rate after burst
high frequency stimulation of STN [29].

three distinct frequency bands (theta 4-7Hz, beta 12-30Hz
and gamma 30-100Hz) and their relative prominence changes
with the onset of the disease. Results suggest that beta
band blocks the execution of voluntary movements (or at
least it consistently co-occurs with motor suppression), while
gamma band seems to be present when voluntary movements
are executed. Conversely, theta band may be related with
the symptom of limb tremor, given the similarity on the
frequency of oscillations [24], [25], [26], [27], [28]. Given its
alleged close relationship with motor impairment, it would
be important to know how and/or where beta oscillations are
generated, as controlling or suppressing such oscillations may
influence motor impairment.

II. METHODS

A. Mathematical model

The STN-GPe network is a mutually coupled system,
where STN neurons project excitatory glutamanergic axons
to the GPe [30], whilst GPe neurons project inhibitory
GABAergic axons to the STN and to other neurons within
GPe [31]. Additionally, these two nuclei receive inputs from
cortex and striatum respectively [32]. To characterise the
firing rate of neural populations in STN and GPe we use
the well described firing rate model [33], [34]. Using the
equation of the mean firing rate model to model STN and
GPe populations, we obtain the following set of equations
describing our model:

Table I
VALUES FOR FIXED PARAMETERS.

Parameter Value source
∆tSG 6 ms [29]
∆tGS 6 ms Extrapolation to monkeys based on [37]
∆tGG 4 ms Based on proximity between cells
τS 6 ms [38], [39], [40]
τG 14 ms [41]
Ctx 27 spk/s [42]
Str 2 spk/s [43]
MS 300 spk/s [44]
BS 17 spk/s [44]
MG 400 spk/s [29], [32]
BG 75 spk/s [45], [32]

This table shows the model parameters whose values were directly estab-
lished from the experimental literature. For each parameter, the used value
and the literature source are shown.


τS ˙STN = −STN(t) + FS(−wGSGP (t− ∆tGS) + wCSCtx)

τGĠP = −GP (t)+

FG (wSGSTN(t− ∆tSG) − wGGGP (t− ∆tGG) − wXGStr)
(1)

where STN and GP are, respectively, the firing rates of the
STN and GPe neural populations. Ctx and Str are the con-
stant inputs from cortex and striatum, respectively. Although
beta oscillations have been reported in the cortex and the
striatum [35], [36], we wish to explore whether the STN-GPe
network could generate beta oscillations independently of an
external oscillatory drive. Consequently, we do not explicitly
model corticostriatal interactions and consider these inputs
to be constant, implying that any oscillatory phenomena
appearing in our model will be exclusively due to the STN-
GPe network. τS and τG are the time constants for STN and
GPe populations, respectively. FS(·) and FG(·) are the input-
output relationships for STN and GPe populations. wAB are
the weights of the connections from neural population A to
neural population B. ∆tAB are the transmission delays of
connections from population A to population B respectively.
Here the indexes A and B used to indicate different neural
populations can be: S for STN, G for GPe, C for cortex and
X for striatum. For clarity, we refer to this set of equations as
the ‘original model’, to distinguish it from the two simplified
models we consider in the Results section.

B. Determining parameter values

For many of the parameters of the model we were able to
determine their values on the basis of published experimental
studies (see table I). We used the results of experimental
studies from monkeys, unless stated otherwise. However
there is a type of parameter that cannot be directly estimated
from experimental studies, i.e. the synaptic weights of the
network. The values of these synaptic weights were estimated
by fitting the behaviour of the model to a wide range of
experimental recordings of neuronal activity.

With the advance of Parkinson’s disease dopamine is
depleted in the basal ganglia, and experimental evidence
suggests that this depletion has an effect the synaptic weigths
of the STN-GPe network. In the terms of our model, this
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Figure 3. Comparison of model behaviour with experimental data
obtained from monkey models of Parkinson’s disease. A: Comparison of
the experimental measurements with the corresponding values observed in
the computational model. The numbers under the x-axis indicate different
experimental recordings used used. For measurements 7 to 12, vertical axis
indicates firing rate in spk/s, while for measurement 13 it indicates oscillation
frequency in Hz. Black circles correspond to the equivalent values using
model simulations, while grey crosses show the mean experimental values.
In measurement 8 and 11 grey vertical lines indicate standard deviation,
while in measurement 13 it indicates the frequency range observed in
studies by [46], [47]. The numbers under the x-axis correspond to: (7)
STN oscillations minimum firing rate; (8) STN mean firing rate; (9) STN
oscillations maximum firing rate; (10) GPe oscillations minim firing rate;
(11) GPe mean firing rate; (12) GPe oscillations maximum firing rate; (13)
STN and GPe oscillations frequency. B: Firing rate of the STN and GPe
generated by the model for the same parameter values as figure ‘A’. C: A
single cycle of oscillation from panel b. The horizontal axis shows the phase
of the oscillation, where phase 0º corresponds to the lowest GPe firing rate.
The vertical dashed line shows the mean value of phase of each nuclei,
which was calculated using the standard equation for the mean of a circular
quantity (in this case, the phase).

would be the main alteration to our parameters, and there-
fore we decided to fit two sets of experimental recordings
separately - one obtained from healthy animals (see figure
2) and other obtained from parkinsonian animals (MPTP
monkeys, see figure 3). In accordance with experimental
evidence, the synaptic weights that we obtained when fitting
the healthy data were smaller than the ones obtained when
fitting parkinsonian data.

III. RESULTS
A. The mathematical model generates beta oscillations in the
parkinsonian state

When the model was simulated with parameter values
corresponding to a healthy state, the firing rate of STN and
GPe populations converged to a stable state and the model
did not produce oscillations (figure 4A and D). However,
when the synaptic weights were linearly increased towards
the values obtained when fitting parkinsonian data, prominent
oscillations in the beta band become apparent (see figure
4B,C,E and F). A bifurcation analysis of this phenomena
indicates that the system goes through a Hopf bifurcation as
the synaptic weights are increased (see figure 4G). This bi-
furcation accurately generates the same range of oscillations
as observed in Parkinson’s disease (see figure 4H), which are
termed beta oscillations in the literature of the disease.

B. Conditions for the onset of oscillations

The study sumarised in the previous subsection shows
that the system goes through a Hopf bifurcation when
the weights are linearly increased from the healthy to the
parkinsonian parameters. However they do not confirm if
this same bifurcation is the one affecting the system in all
cases - i.e. if the system advances towards the parkinsonian
state following another nonlinear path through the parametric
space. To investigate how general the Hopf bifurcation is (i.e.
the extent of the Hopf bifurcation surface in the parametric
space), we derive analytically the conditions that generate
such oscillations in the parkinsonian state.

To investigate the origin of oscillations analytically, we
consider two consecutive reductions of the original model.
The first reduction consists on approximating the sigmoidal
activation function in the original model by a linear func-
tion. We think that this linearisation plus a lower boundary
imposed on the activity of the STN and GPe (the variables
STN and GP , which represent firing rates, cannot acquire
negative values) correctly approximates the behaviour of the
original system in the activity range of STN and GP . The
second simplification of the original model is the assumption
that both time constants and all transmission delays are equal,
as the literature reports that they adopt similar values. To
distinguish between models, we will refer to the first model
as the original model, the second one and the delayed linear
model and the last one as the nondelayed linear model. The
equations of the delayed linear model are:


τ ˙STN(t) = −STN(t) − wGSGP (t− ∆t) + wCSCtx

τĠP (t) = −GP (t)+

wSGSTN(t− ∆t) − wGGGP (t− ∆t) − wXGStr
(2)

while the equations of the nondelayed linear are:


τ ˙STN(t) = −STN(t)

−wGS

(
GP (t) − ∆t·ĠP (t)

)
+ wCSCtx

τĠP (t) = −GP (t) − wXGStr+

wSG

(
STN(t) − ∆t· ˙STN(t)

)
− wGG

(
GP (t) − ∆t·ĠP (t)

)
(3)

If the nondelayed linear model is analysed, it can be
detected that under three conditions the system will generate
oscillations. First, the steady state of this STN-GPe system
has to be unstable. Second, the trajectories starting from
the neighborhood of the steady state should form clockwise
spirals, something that can be detected formally if the curl
of the (STN,GP) flow is calculated. The third condition
required for oscillations is that a closed loop trajectory is
formed between the intersection of the boundaries and one
of the spiral paths. The mathematical form of each one of
these three conditions can be derived analytically (see [48])
obtaining:

wSGwGS
∆t

τ
> 1 + wGG

(
1 − ∆t

τ

)
/2 (4)
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Figure 4. Simulations of the original model. A, B, C: Firing rate as a function of time for different values of K. D, E, F: Phase portraits of the system
showing the same firing rates as in A, B and C. G: Range of firing rates of STN as a function of parameter K. A stable steady state is shown with a solid
grey line. The unstable steady state is shown with a dashed grey line. The maximum and minimum values in a cycle of oscillations are shown in black.
H: Frequency of the oscillations for different values of K. Note that the model predicts a decrease in frequency of oscillation as the weights increase.

for the first condition,

wSGwGS > w2
GG/4 (5)

for the second condition, and

wSGwCSCtx > wXGStr (6)

for the third condition.

C. Comparison of analytical results with numerical simula-
tions

The three conditions derived in the previous subsection
form a hyperdimensional surface in the parametric space
of the synaptic weights, which corresponds with a Hopf
bifurcation surface in the nondelayed linear model. To study
the validity of this bifurcation surface in the original and
delayed models, we simulated these sistematically in all
nodes of a mesh in parameter space. For wach node, its
main frequency and power is represented in figure 5, where
the extent of the oscillatory area can be compared with the
analytical bifurcation surface.

It can be observed that the analytical surface matches
closely with the surface calculated numerically in the delayed
linear model (see figure 5A). In the original model the surface
follows the same shape (dashed line in figure 5B), while the
position is not as accurate as in the previous model due to
the nonlinear shape of the sigmoidal function. To further
approximate the original surface, a different linearisation
point can be used when linearising the sigmoidal function.
If this point is selected around the average value that STN

and GP adopt during the parkinsonian oscillations, a closer
match can be obtained (solid line in the figure). It can also be
observed that the transmission delays (∆t) and time constants
(τ ) of the model define the frequency of the parkinsonian
oscillations, but not so the synaptic weights. If the ∆t and τ
are set to the experimentally recorded values, beta oscillations
will be obtained.
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