Cagnan Group

Group Science

Our everyday actions, from decision making to motor control, are thought to involve information exchange through transient, often rhythmic, neural synchrony across multiple brain regions. Emerging evidence suggests that a range of neurological disorders such as Parkinson’s disease (PD), essential tremor (ET), dystonia and dyskinesia could be attributed to dysfunction of this fundamental neural property. To date, the functional and pathological roles of transient neural synchrony remains unknown, a critical link that could be leveraged to identify novel ways of treating aberrant synchrony. We aim to utilize deep brain stimulation (DBS) in order to selectively and dynamically modulate synchrony in the cortico-basal ganglia loop to establish the functional role of transient synchrony, and its pathological role in PD and ET.

Key Research Areas: 
selective neuromodulation – modulating neural activity of interest while sparing other physiological function
dynamic neuromodulation – adjusting neuromodulation according to the current state of the neural system
mimicking nature – learning from spontaneous neural processes how to modulate neural synchrony
Research Techniques: 
Deep Brain Stimulation (sensing and stimulating)
Theoretical Modelling (single unit to population level models)
Neuroimaging (MEG)